IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1953

Elastic stability of the top chord of a three-span
continuous pony truss bridge

Cornie Leonard Hulsbos
Towa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Civil Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation

Hulsbos, Cornie Leonard, "Elastic stability of the top chord of a three-span continuous pony truss bridge " (1953). Retrospective Theses
and Dissertations. 13281.
https://lib.dr.iastate.edu/rtd /13281

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com


http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/13281?utm_source=lib.dr.iastate.edu%2Frtd%2F13281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the origina! or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken orindistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright matenal had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






NOTE TO USERS

This reproduction is the best copy available.

UMI






ELASTIC STABILITY OF TiiE TOP CHCRD OF A

THREL -SPAN CONTINUOUS PONY TRUSS BRIDGE

by

Cornie Leonard Hulsbos

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Roquirements for the Degree of

DCCTOR OF PHILOSOPHY

Major Subjects

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of MajJor Department

Signature was redacted for privacy.

Dean of Uraduate Collego

Structural Enzineering

Jowa State Colleze

1953

Lo S .
........
. NERN



UMI Number: DP 12399

B

UMI

UM!I Microform DP12399

Copyright 2005 by ProQuest information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Tille 17, Uniled States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346



11

Qe TABLE OF CONTENTS

INTRODUCTION

Object
Historical Backziround

NOTATION

STABILITY ANALYSIS OF THE ELASTICALLY SUPPORTED
BEAM-COLUMN

Series Criterion
Derivation of Formulas for the Series Criterion

Stiffness Criterion
Derivation of Formulas for the Stiffness Criterion

DESIGN ANID STRESS DATA FOR THE THREE=-SPAN CONTINUOUS
PONY TRUSS BRIDGE

STABILITY ANALYSIS OF THE TOP CHORD OF THE THREE-SPAN
CONTINUOUS PONY TRUSS BRIDJIE

Elastic Properties of the End Post

Stiffness of the Elastic Supports

Numerical Results of Stability Analysis

Discussion of Numerical Results
SUMMARY AND RECOMMENDATIONS

Sumary
Recommendations

LITERATURE CITED

ACKNOWLEDGMENTS

APPENDICES
Appendix A

Appendix B
Appendix C

T 106k 44

Page

~ FE

10
10
12
g&

1

65

100
110



INTRODUCTION
Object

The object of this investization was to make an analy-
tical study of the elastic stability of the top chord of a

three-span continuous pony truss bridge. The particular

bridge studied was desizned by the Iowa Highway Commission
in 1947 and erected over the North River on State Hishway 60
a few miles southoast of Des Moines, Iowa,

The present Standard Hishway Specifications of the
American Association of State Hizhway Officials (1) require
that a check be made for stabllity of the top chord of a
half-throu:h or pony truss bridge, These Specifications suz-
zest Timoshenko (2) as a reference for a procedure of
analysis for stability; in this referenco, Timoshenko,
however, does not cover the case of a continuous atructure
in which the top chord will have members in tension as well
as in compression,

In a previous edition of the Standard Highway Specifi-
cationa (3, p. 173) it was stated that:

The vertical truss members and the floorbeam
connections of half-throuzh truss spans shall be
proportioned to resist a lateral force, applied
at the top chord panel points of the truss, deter-
mined by the following equations
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150(A + P) in which:

lateral force in pounds,

area of cross section of the chord in
square inches,

panel length in feet,

W »EOX
uwnun

This i1s an empirical procedure and no additional check for
stability was specified as being required, This same pro-
cedure was employed by the Iowa Highway Commission for the
design of the pony truss used as an example to which the
results of this thesls were applied.

The problem studied was one of a long top chord which
is essentially a beam-column elastically supported at intore
mediate points by a frame composed of the verticals of the
truss and the floor besns framing into the verticals, The
type of solution was limited to one in which it was assumed
that the truss membors were in a plane before and after the
loads were applied to the structure, The effoct of the
diazonal web members of the truss on the stabllity of the
top chord was neglected, Should the influence of the
diazonal web membors be desired, it could be introduced by
the method developed in this thesis after careful considera-
tion is taken of the effect of the gusset plates, The
problem then was limited to the stability analysis of a
membor composed of the top chord and end posts of a three-
span continuous pony truss bridge; the top chord is elasti=-
cally supported at the panel points against deflections in a
direction at right angles to the plane of the truss, and 1t
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18 assumed that the members form a straizht line when
viewed from above.

Briefly, the procedures of analysis used in this
investigation to check stability are: (1) When an external

clockwise moment, under a condition of equilibrium, is
required at a Joint to rotate the joint in a clockwise
direction, there is an indication of stability; but, when
the external moment necessary to hold the joint in equili-
briunm is opposite to the direction of the rotation, then
there 1s an indication of instability. And, (2) When a
force, under a condition of equilidbrium, acting out of the
plane of the truss 1s applied at a joint and when the
direction of the deflection of the joint is in the direction
of the applied force, there is an indication of stability;
but, when, under a condition of equilibrium the direction of
the force must be opposite to the direction of the deflection
of the Jjoint, then a condition of inatability is indicated.
In order to solve a problem involvinz stability it is
necessary to deal with a fallure load; this leads to the use
of the term "load factor" instead of "factor of safety".
The term "load factor" has been used in the aeronautical
fleld and is coming into use in the civil engineering struc-
turel field. The "load factor" as it applies to a buckling

problem can be defined as the factor which when multiplied
by the actual or design live load is expected to produce a
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load causing a buckling failure in the structure.

The actual procedure of determininzg the load factor
for a particular structure is one of selectin; trisl values
of the load factor; that is, a load factor 1s assumed and
the structure checked for stability. This process is then
repeated until the load factor which causes failure by
bucklinz is found, The work in this thesis was limited to
axial unit stresses that were within the yield strenith of
the material,

Historical Backzround

The procedures used in the analysis in this thosis
were based on the series and stiffness criteria which are
extensions of the conventional moment distribution type of
solution as applied to continuous frames, The literature
used as a background for the work is briefly roviewed,

The series criterion is an extension of the moment
distribution procedure of Hardy Cross (lj). In 1935, James
(5) extended the Cross method of moment distribution to the
analysis of continuous members subject to axial loads,
Tables of stiffness and carry-over factors for structural
members under axial load have been published by Lundquist
and Kroll (6) (7). In 1937, Lundquist (8) applied the prin-

ciples of moment distribution to stabllity problems and
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developed the series and stiffness criteria, In 1941, Hoff
(9) zave the rirst rizorous proof of these eriteria
developed by Lundquist., The procedures for stability
analysis described above were limited to cases of continuous

members over rigid supports or trusses in which the buckling
was oconsidered in the plane of the truss; in other words,
the Jjoints of the trusses were considered to rotate but were
assumed as fixed in position, In 1945, Hu and Libove (10)
applied the principles of moment distridbution to the stress
anglysis of an elastically supported beam-column, Winter,
in 1948, (11) published a bullotin on buckling of trusses
and rigid frames, In the analysis of the rigid frames he
considered the effect of joint displacemont, or sidesway, on
the buckling stability of the frame. Also in 1948, Kavanagh
(12) published a survey of the theory of framowork stability
that was made available to members of the Column Research
Council, In 1949, Wessman and Kavanagh (13, p. 968) made a
statement as follows:

It will be of some interest however to know that

additional investigation has demonstrated clearly

that the bucklinz loads for steel buildings and

bridge trusses, with members having slenderness

ratios in accord with current design practice, are

so close to the loads correspondinz to the yleld

stress of the steel employed, that thore is abso-

lutely no need for buckling load analysis, The

yield strenzth is the ceiling regardless of

whether ordinary structural steel, low alloy steel,

or silicon steel 1s used, This conclusion is not
true, however, for structural aluminum alloys.
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Whereas buckling of truss mcembers in the plane of the truss
was considored by Wessman and Kavanagh, in this thesis,
buckliny of the entire top chord out of the plane of the
truss was considered, Budiansky, Seide, and Weinberger (1l)
developed a set of curves for the buckling of a column on
equally spaced defloctional and rotational springs, Their
results consider only the special case of equal spans,
constant compressive force, equal deflectlional sprinzs,
intermediate rotational springs of equal stiffness and end
rotational sprinzs of half the stiffnoss of the intermediate
springs., Work on the buckling of the top chord of a sinile-
span pony truss bridze has been carried on by Holt (15) (16).



NOTATIOR

Only those symbols which are used repeatedly throughout
the thesis are included below with the number of the paze on
which the symbol is first used,

Ao Substitution for S, + Sp., (s8)
B, Substitution for 31%_'_ - Spy, (58)
c Carry=-over factor (13)

Cy Carry=over factor (32)

CalR Carry-over factor (36)

Cb2R Carry=over factor (41)

Co2R Carry-over factor (16)

D2 Substitution for T, + Spyy (58)
D.F. Distribution factor (48)

E Modulus of eolasticity (13)

I Moment of inertia (13)

Substitution for / %T (13)

Lenzth of a member (13)

Ly Length of a member (32)

Ma Moment at the end of a member with no adjacent
member (13)

M Moment at end A of member AB (32)



Torsional moment about the t-axis (77)

Axial stress (13)

Axial stress (33)

Stability factor (11)

Rotation of a member (32)

Stiffness factor (13)

Stiffness factor (32)

Stiffness factor (35)

Substitution for S(1 + C) (19)
Substitution for Sy (1 + G) (33)
Rotational stiffness (51)
Translational stiffness (51)
Quantity used in the stiffness criterion
Quantity used in the stiffness criterion

Torsional stiffness (77)

Stiffness of an elastic support (32)
Translational stiffness (31)
Translational stiffness (16)
Translational stiffness (33)
Translational stiffness (34)

Shear at the end of a member with no adjacent

member (13)

Shear at end A of member AB (31)
Rectanzular co-ordinates (13)
Deflection of a joint (L)

(51)
(51)
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Rotation of a joint (31)

Rotation of a joint (26)

Deflection of a joint (18)

Substitution for T;%Tz (kL Cos kL - 1) (15)

Substitution for TELL)-Z (1 - kL Cot m:)(7 (15)

Subatitution for = 1 . (kL Gosh ki = 1) (2)
(k1)2

Substitution for - _1 (1 - kL Coth kL) (21)

(k1)2
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STABILITY ANALYSIS COF TiE ELASTICALLY SUPPORTED
BEAM~COLUMN

In this thesis the analysis was, of course, based on the
works which have been cited, For purposes of verification
and clarification, all equations used were derived anew even
thoush various derivations for some of them can be found in
the aforementioned literature., In many cases the derivations
are of a more general nature and in some tho derivations are
entirely new, This complote set of derivations i1s essential

for the clear and conclusive presoentation of the final

solution, The equations for tho stiffneoss criterion were
derived with a sign convention which is believed clearocr than
previously used sizns, In addition, the stability criteria
were applied to an existing three-span continuous pony truss
bridge where before the application had been limited to

sinzle=-span structures,
Series Criterion

The series coriterion is one of the oriteria used to
check the stabllity in a structure. The series criterion
states that when a converszingz series 1s obtained a condition

of stability is indicated, but when a diverzing serles is
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obtained then a condition of instability is indicated, The
series in this case 1s obtained from a moment distribution
golution, The general procedure as applied to a beam-column
elastically supported at the joints (representing the top
chord of the pony truss) is as follows:

Apply an external moment at any joint, N, of the bean-
colunn,

Balance joint N which is permitted to rotate and
deflect while other joints are held against rotation but nay
deflect subject to the elastlc restraint at each joint,

Then, Jjoint N 18 fixed azainst rotation but 1s free to
deflect subject to the elastic restraints contributed by all
moribers and supports.

The forezoing operations will cause moments to be
carried over to the ends of every menmber of the beam~column,

Now tho other joints, except N, are balanced one at a
time and momeonts carried over to the other members as alroady
described.

This process 1s repeated until all of the joints are
balanced except, of course, jJoint N. The unbalance at joint
N 1s dotermined by adding all of tho momonts carried to

Joint N while balancing the othor joints in the structure,
The unbalanced moment at N divided by the originally

applied external moment ives a stability factor, r,
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Now 1f joint N were balanced a second time and the
entire process repeated, the new total moment carried over
to N divided by the orizinally applied external moment
would equal r2. If this process were repeated a series of
the type

1+r4+r2+r3+rds aaaaa
would be obtained, For this series to conversze, r must be
less than one, When r equals one, a condition of neutral
equilibriun exists. The physical significance of neutral
equilibriun can be explained as the condition when no
oxternal moment is required to rotate a joint of the struc-
ture, When r 1s less than one, a clockwlse external moment
is required to rotate the jJoint in a clockwise direction
which has beon defined as an indication of stability and
when r 1s groater than ono, a counterclockwise extornal
moment, under a condition of equilibrium, is required for a
clockwise rotation of the joint and this has been defined as

an indication of instabllity.

Derivation of Formulas for tho Series Criterion

For a moment distribution solution the elastic constants

of the members are required. Two of these elastic constants
are the stiffness and carry~over factors. When axial loads

are neglected, these factors are a function of the physical
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properties of the member., When the effect of an axial load
in the member is considered in the moment distribution
method of analysis, the stiffness and carry-over factors are
dependent on the magnitude and type, tension or compression,
of axlal force, as well as the physical properties of the
members. .

If a member is hinged azainst deflection at the near end
and fixed against rotation and deflection at the far end, the
ratio of the moment at the far end to the applied moment at
the near end is known as the carry-over factor and will be
denoted by C., Also, the moment necessary to produce a
rotation of one radian of the near end 1s knowm as the stiff-
ness factor and will be denoted by S, In the references
taken from the aeronautical field the stiffness factor is
defined as the moment that will produce a rotation of one-
quarter radian, However, the definition of one radian
rotation as usually used in the structural field will be
used in this thesis,

The differential equation for the deflection of the

member in Fizure 1 is

B 8L = oV - Py (1)

My + Mg .

in which VA = 3ince P, E, and I are constants,

P
let k2 = 5T « The solution of equation (1) is



I

o .-

FMgure 1. Compression member with its left end rotated,
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s | M, + M
¥y = € Cos kx + C, Sin kx + AfL B x (2)

The constants C; and Gy in equation (2) are determined
from the boundary conditions, x= 0, y= 0, and x = L,

¥y = 0 resulting in

_M ‘

¢ =M andc,=-_ 12 [n CoskL-c-MB]

1 5 e FSin i@ A

Therefore,
y 2'25 Cos kx = My Cos KL + Mp gqp) 1
P n

-da+Ma *Mp, (3)
3 PL

Taking the derivative of equation (3) with respect to x,

introducing the boundary condition x = L, %§'= 0, and then
making the substitutions

¢§ = ?;%72 (kL Csc kL = 1)

= —i (1 = kL Cot ki)
n (kL)

the carry-over factor i1s found to be

¢c="p- ()
MA c'f)';

The stiffness factor, which has been defined as "A with

the condition x = O, %% = 1, 1s found to be

S=M, = T *n (5)
X
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Values of C have been published (6) (7) for values of

kL, Values of gI for values of kL have been tabulated

L
the same source in which the stiffness has been defined as

the moment that causes a rotation of one-quarter radian,

Therefore, the tabulated values can be used for the above

case if they are equated to —E%i- e« Approximate values of

in

and S can be obtained from the curves included in Appendix A,

When the axial force is zero, kL equals zero and 7@%:- is

equal to one., Therefore, for this special case S = §§l
which, of course, is recognized as the usual stiffness

factor when axial forces are not present or are nezglected.

The translational stiffness of a member is another elastic

constant required for the moment distribution solution for a

beam-colunn type of member, The translational stiffness 1is

defined as the shear necessary to deflect one end of the
member a unit distance with respect to the other end when
neither end is permitted to rotate, The translational
stiffness of the member will be denoted by T,

The differential equation for the deflection of the

member in Figure 2 is

2
.‘.1-1-_-- -
EI e Py + M, - V,x (6)
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Flgure 2, Compression member with its right end deflected,
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in which v, = Mo * Mg = P& .13 from symmetry M, = Mp.
A T A B

Letting M = M, = My and substituting k= for gk~ , the solu-

tion of equation (6) is
- M_2M S
y..clcoskx-tczSinkx-O--f Ex+_r§ (7)

The constants C; and G, in equation (7) are determined
from the boundary conditions, x = 0, y =0, and x = L,
y=5 resulting in

=M andc.=M 1+ Cos kL
! P 2 P TSin KL

Therefore,

| M1+ Cos kL M_2M 5482
= PCOSkX'F-?-—SIx—m—E-—SinkI-ﬁ? .ﬂ:x T (8)

Taking the derivative of equation (8) with respect to x,
and introducinzg the boundary condition, x = 0, g% =0
results in

M=EL ¢ (9)

Writinz equation (9) in terms of C and S from equations
(4) and (5) results in

u=8Q02+0)5 ;05 (10)

The value of the shear V, or Vg is equal to the trans-

lational stiffness of the member when § = 1
2M - P

T=VA =V’B ]

23(1 + C)

2
1 -
L2

ol L -]
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Substituting S''' for S(1 + C) results in

~a8''' _p
'r.._;é_ I (11)

All of the previous derivations were made for members in
which the axial force was compression, When the axial force
is tension some changes are brought about in the equations,
The elastic constants S, C, and T will, therefore, be derived
for a nember with a tension axial force,

The differential equation for the deflcction of the
member in Figpure 3 is

2
EI = « M, + V,x + Py (12)
Q‘de A+ Vi
inwvhich Vy = Ba+ ¥ 5, substituting ¥ for _E., the

solution of equation (12) 1is

- My o My + M
y-clcoshkx-tczSinhb:-!-?A _e_ir__gx (13)

The constunts C; and G, in equation (13) are determined
from the boundary oconditions, x =0, y = 0, and x = L,

¥y = 0 resulting in

cl=-g_6 mdcazm(ﬁACoshkL-l-MB)

Therefore,

¥ = - YA Cosh kx + Ma Cosh kL + Mp giph ix
P P Sinh kL

+ By oMy + Mpy (1y)
P PL
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Figure 3, Tension member with its left end rotated,
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Taking the derivative of equation (1ll}) with respect to
X, introducing the boundary condition x = L, %?(: = 0, and then
making the substitutions

$. == 1 (kL Csch kL - 1)
)z
dp=-~-_1 (L - kL Coth kL)

the carry-over factor is found to be

C=§_B_=_:¢_%. (15)
My ¢n

The stiffness factor is found with the boundary condi-
tionx =0, X =1
dx

¢.
S=M =& n (16)
hs g (Pn)2 - (dp)2

As for members with axial compression, values of C and

) for members with axial tension have been tabulated

-

(6) (7) for various values of kL, Approximate values of C
and S can be obtained from the ocurves included in Appendix A,
The expression for the translational stiffness of the

member also depends on the type of axial force,

The differential equation for the deflection of the
member in Figure li is
EI i%:HA-VAxﬁ-Py a7
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A , 8
U SO
{//
F /] A\. ot | .
N7 — S My '
s
1
- L My

M qure ), Tension member with 1ts right end doflected,
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in which V, = My *jﬂB‘* P& and from symmetry M, = Mg,
L

Letting M = M, = My and substituting k2 for E%’ the solution

of equation (17) 1s
y:clcoshm+0231nhkx-%+éﬁ_:§r§§_x (18)

The constants C; and Cp in equation (18) are determined
from the boundary oconditions, x =0, y = 0, and x = L,

¥= é resultinzg in
N = « M 1+ Cosh kL
0 = P and 02 ¥ Sinh KL

Therefore,

y=4 .M 1+ Oosh KL

%... 2M+ PS (19)

Taking the derivative of equation (19) with respect to
x and introducini the boundary condition x = 0, -“g =0

results in

M= BI & (20)
12 Pn = ¢1")

Writing equation (20) in terms of C and S from equations
(15) and (16) results 4in

M:ﬂl—%—g&- (21)

Equation (21) for a member with axial tension has

oexactly the same form as equation (10) for a member with

axial compression, Even though the form of these equations
is the same, there ias a difference in the individual values
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for C and S depending upon whether the axial load is tenslon

or compression,
The value of the shear VA or VB 18 the translational

stiffness for the member when & =1

- - - M+ P
T=V,=Vg= =

L

ol o)

''' for S(1 + 0)

r=28"" 4 p (22)
L2 T

In lator derivations it was desirable to have a gonoral

Substituting 8

equation for the moments at the ends of a member for the
Zeneral conditions of displacement and rotation of both ends
of the member as is indicated in Figure S,

The differential equation for the deflection of the

member in Figure 5 1is

2
EX %x.§ = = My + Vpx = P(y = ;) (23)

in which vy = My + ¥p + P(yp = Jp) | substituting k2 for
T

%I » the solution of equation (23) is

y=0) Cos kx+ 0y Sinix - Ma+ My * Mp+ Plyp - 7))
) FL

+ A (2})
The constants G, and C, in equation (2}) are determined

from the boundary conditions, x = 0, ¥y = y,» &nd x = L,
y = yg resulting in



Pigure 5, Compression member with both ends rotated and
deflected,
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- H - M, Cos kL + M
Cy = %A and = - YA B
1 P O P Sin kL

Therefore,

v=H2A Cos kx - My Oo8 ki + My g4 iy _ My
P P Sin kL P

X+ 7¥a (25)

Mp 4+ Mp+ P(yg = ¥a)
PL

Taking the derivative of equation (25) with respect to x
and introducing the boundary conditions, x = 0, %% = GA
and x = L, g = ©Op, two equations are obtained that can be
solved simultaneously for M, and Mp:

P, P, -
MA=W§I[GA+ 6 .(.é -(14-%5)(’8 74\)](26)

Haz_gg_’_xf_;:_g%;(ea-; 95-%)-3 - (1*%)(78‘71\)] (27)

Writinz equations (26) and (27) in terms of C and 8
from equations (lj) and (5) results in

My = s[e“ BaC = (1 + ©) (YB - YA)] (28)

Mp = S [95 + 60 = (1+0) (YB - 75)] (29)

Equations (28) and (29) are derived for a compression
axial load; the form of the equations for a tension axial
load 1s exactly the same, Even thouzh the form of these
equations remains the same, there 1s a difference in the

individual values for S and C dependinz upon whether the
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axial load is tension or compression.

For the beam-column, Fizure 6(a), the procedure and
factors that are required for a moment distribution solution
for the moments due to an externally applied moment at one
of the Jjoints are as follows:

Apply an external moment at joint C. The structure will
deflect, in general, as shown in Figure 6(b). The joint C
is permitted to rotate dbut all of the other joints are held
against rotation with a temporary extornally applied moment.

The external moment applied at C must be distributed
between the ends of the two members that meet at joint C,
Stiffness factors will be derived which will be used to
determine the distribution factors at C,

A first type of carry-over factor for the member CD
must be determined so that the moment Mpc can be camputed
as this carry-over factor multiplied by the balancing
mament, Mgps at Joint C.

A second type of carry-over factor must be determined
so that the moments Mpp; and Mgp oan be found as this
carry-over factor multiplied by the moment Myp at jolnt C.

A third type of carry-over factor must be determined so
that the moments Mp, and My can be found as this carry-over
factor multiplied by the moment MDE‘

The third type of carry-over factor is used to determine
the moments induced in any additional members to the right,
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The same procedure as described above 1s used to determine

the induced moments at the ends of the members to the left
of jJoint C, This completes one cycle of balanocing one
Joint and determining the induced moments in the other
members, The other joints will be balanced in a similar
manner, one at a time, and moments carried over until all the
Joints are balanced,

The elastic conastants of the members, stiffness and
carry=-over factors, are the same for each end of the member
when there 1s no relative displacement of the ends of the
member. This i1s true for a member of constant cross
section throughout its length when axial forces are con-
sidered as well as when axial forces are non-existent or
neglected, However, when the ends of the members are
elastically restrained, relative displacement of the ends
will ococur, and the values for the stiffness and carry-over
factors must be determined for each end of the member, The
magnitude of these faoctors will depend, therefore, on the
magnitude of the stiffness of the elastic supports, as well
as all of the othor factors that were included in the pre-
vious derivations made for the expressions for stiffness and
carry=-over factors when no relative displacement of the ends
of the membexr ocourred,

Figure 7(a) shows a segment of any two oconsecutive
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Figure 7. Two members of a continuous, elastically supported
beam~column with Joint B rotated, and with Joints
A, B, and C deflected,
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members of the beam-column shown in Figure 6(a). In order
to simplify the notation for zeneralized equations which are
to be derived, the members of any segnent of any two conse-
cutive members will be referred to as members 1 and 2, and
the joints as A, B, and C. This notation will be followed
in all subsequent derivations,

Apply an external moment Mp at joint B producinzg a
rotation of X radians, All of the joints are free to
deflect subject to their elastic supporta, joint B is per-
mitted to rotate under the applied moment, and all of the
other jJoints are fixed against rotation,

The effect of the elastic support at A and the entire
structure to the left is represented by V,p which i1s the
shear in the member AB at a point Jjust to the right of the
elastic support at A, The shear V,q will be expressed as
tiLyA in which y, is the deflection of joint A and tiL is
defined as the force per unit of deflection for the left end
of member 1 and the entire structure to the left when no
Joint 1s permitted to rotate. Likewise V4p, the shear just
to the left of the elastic support at C, represents the
offect of the elastic support at C and the entire structure

to the right. The shear Vgp Will be expressed as téﬂy

which yg 1s the deflection of joint C and tjp 1s defined as

c in

the force per unit of deflection for the rizht end of member
2 and the entire structure to the right when no joint is
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permitted to rotate, The external force Fh at joint B can
be expressed as tgyg in which yp is the deflection of joint B
and tp 1s defined as the force per unit of displacement for
the elastic support at B,

Referring to Figures 7(b) and (¢) and to equations (28)
and (29) the following equations for the moments at both ends

of the two members can be written:

Mg =8 [ G - Ript+ o) (30)
Mg, = sl[o(- Ry + cl)] (31)
Mpg = Sp[=t = Rpp (1 + 02)] (32)
Mop = S, 0% = Ry (1 + Gp)] (33)

in which Ryp 18 defined as JB = Y4, and Ry 18 defined as

Jo -,
E.?

The relative magnitude of the moments HBA and HBC will
give the necessary information to distribute the moment
applied at joint B to the two members coming into joint B,
From an inspection of the above equations it appears that
these momenta may not vary linearly with the angle of rotation
of joint B. Therefore, the derivation will be made for an
angle of X radians instead of an angle of one radian as 1is
usually used in the derivation of stiffness factors,

To obtain the values for the moments, an expression of
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RlR and RZL will be required.
Referrinz to Figure 7(b) and summing moments about B:
! -
“AB + HBA + PI(YB - YA) + tlLyALl =0 (321)
Referring to Fizure 7(c) and summing moments about B
'
Referring to Pigure 7(a) and suming forces in the y
direction:
' '
b1 T4+ tp + bop¥o = O (36)
Substituting equations (30) and (31) into equation (3l)
and making a substitution usinz equation (11) results in

S"'o« .m12 " YA 4+ t'ylL =0 (37)

1 T 17 A"
Substituting equations (32) and (33) in equation (35)
and making a substitution using equation (11) results in

s 112 Jo-IB ¢y =0 8
2 22 T1, zaycz (38)

Equations (37) and (38) are derived for a compression
axial load; the form of the equations for a tension axial
load is exactly the ssme, ILven though the form of these

equations remains the same, thore 1s a differonce in the
individual values for S''' and T depending upon whether the
axial load is tension or compression.

The three equations (36), (37), and (38) are solved
simultaneously for y,, yp» and yge These quantities are used
to solve for the terms R,p and R,y required in equations (30),



(31), (32), and (33).

FS"' (‘b' + t ) - glee Ll T' "W

Rm:yB'YA 1 1L 2 i__T tlL
. - : 2 2  (39)

i x{(t +T1)(t + 7o) )

RO 1y 7

S, (tZL + tzn) - 8 'Eg‘fig tlo

T

REL""yc-yB: Zie! 0 L]v' L x (40)

L, ] LE(tZR + Té)‘tzL + TZL) 1
in which Tiﬂ is defined as the force por unit of deflection

for the risht end of member 1l and the entire structure to
the left when no Jjoint is permitted to rotate, but is free
to deflect subjeot to the elastic supports, Likewise T5; 1is
defined as the force per unit of deflection for the left end
of member 2 and the entire structure to the right.

Also, the equations relating the effeot of elastic sup-
ports in series and in parallel have been used to reduce
equations (39) and (40) to the form ziven above, Examples of

these equations are
]

tan = tB + TlR for elastic supports in series, and

s tiLTi for elastic supports in parallel

IR t + 7T )
1L 1

It 1s noted from equations (39) and (40) that the values

of Ryp and Ry, vary linearly with X . If these valueos are

substituted in equations (30), (31), (32), and (33), it is
obvious that the moments at the ends of the member in Fizure
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7 also vary linearly with <, Therefore, the usual definition
based on one radian of rotation can be used for the stiffness
factor,

When, however, the ends of the menmbers are elastically
restrained, relative displacement of the ends will occur, and
the value for the stiffness factor must be determined for
each end of the member, The symbol is will be used to denote
this stiffness factor for the risht end of member 1; it will
be defined as the moment applied at the rizht end of menber 1
with the magnitude necessary to produce a rotation of one
radian at the right end when the ends of the mcmber are
elastically restrained against deflection and the left end
of the membor is not permitted to rotate, Also, from the
definition of the quantities that have beon used in the
derivation, all of the joints to the loft of the member are
free to deflect subject to the elastic supports but none of

these joints 18 permitted to rotate., The values of SIR and
851, &re, therefore, HBA and MBO wvhen & equals one radian

Sy = Mps = 51[1 - Ryp(1 + 01)] (L1)
With the above information the first type of carry-over

factor can be found, This carry-over factor is used to find

the moment induced at the far end of the members that meet

at the joint that 1s beinz balanced. As an example, the
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symbol Cgqp is used to denote this carry-over factor. The
subscripts alR indicate that the carry-over factor is for

the rigcht end of member 1, that the right end of member 1 has
been balanced, and that the balancing moment at the rizht end
of member 1 multiplied by the carry-over factor C i gives
the induced moment at the left end of member 1, For any
value of X the carry-over factors will be independent of X

and are determined for the members in Figure 7(a) by using
equations (30), (31), (32), and (33)

C.v, = Map = G2 = Rap(l + G) (1:3)
alR xm l-le+ 1 h
and

= Mgp = Cp = Rpr(1 + Gp) (el )

caaL

A special formula for RlR will have to be derived for
the situation when A 1s the left end of the entire beam-
column as shown in Figure 8(a)., An external moment is
applied at joint B, which 1s permitted to rotate and deflect,
Joint A is not permitted to rotate or deflect, All of the
Jolnts to the right of B are permitted to deflect but are
held ri3idly against rotation,

Referring to Pigures 8(b) and (c) and to equations (28)
and (29), the following equations for the moments at both

ends of the two members can be written:
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Fgure 8. Two members of a continuous, elastically supported
beam-column with Joint B rotated, and with Joints
B and C deflected,
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Mp = 8 [clq - Rypll + cl)] (45)
Mg, = 8y [ = Rygla+ )] (46)
Moo = S, [ = Ry (14 )] w7)
Mgp = Sp [, = Ry (1 + C,)] (48)

Referring to Figure 8(b) and sunming moments about B:

Myp + Mp, # Py + VLo =0 (49)

Referring to Figure B(c) and summing moments about B
Mpg + Mop + Po(yg = ¥p) = Vgl = 0 (50)

By definition Vgp = b7 (51)

Referring to Figure 8(a) and suminz forces in the y

directions
Vup + Sp¥p * tu¥c = O (52)

Substitutinzg equations (45), (46), and (52) in equation

(419) and making a substitution usinz equation (11) results in

si!'u
. -
Substituting equations (47), (48), and (51) in equation

(50) and makinz a substitution using equation (11) results in

Sé"c&
'
Equations (53) and (54) are solved simultaneously for

Tp and Ve Then,
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1oy gt pt Ll
-y = (21 2 2L
Rijp = JB T, I, |« (s5)

! L ‘Ti + 613)

A second special formula for Ry, Will be derived for
the situation when A 13 the left end of the entire beam-

column as shown in Figure 9(a). An external moment is
applied at joint A which 1s permitted to rotate but not
deflect., All of the joints to the right of A are permitted
to deflect but are held rigidly against rotation,

Referring to Figure 9(b) end to equations (28) and (29)
the following equations for the moments at both ends of the

member can be writtent

Myp = 8y [0 = Ry (1 + 0)] (56)

Mpa = & [0 = B 2+ ¢))] (57)
Referring to Figure 9(b) and summing moments about As

Mpap+ Mpp + Pyyg = Vpalp =0 (s8)

By definition,
Vs = 1873 (59)
Substituting equations (56), (57), and (59) in equation

(58) and making a substitution using equation (11) results in
S"'

XK
Ay ry -ty =0 (60)
Therefore,
L
Ryp = I8 =_51"" & (61)

pod L 4
oy LZ(T, + t)
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Mgure 9, Two members of a continuous, elastically supported
beam~column with Joint A rotated, and with Joints

B and C deflected,



41

The second type of carry-over factor will be derived for
the conditions shown in Pigure 10. When the joint at C is
balanced, moments are introduced at the ends of member 1 as
is indicated in Figures 10(a) and (b). All of the joints of
the beam-column except C are prevented from rotating but the
joints are free to deflect subject to the elastic restraints
of the supports, The carry-over factor will be denoted as
Cpore The subscripts b2R indicate that the carry-over
factor is for the right end of member 2, that the right end
of membor 2 has been balanced, and that the carry-over
factor cbZR multiplied by the balancing moment at the right
end of member 2 gives the induced moments at both ends of
the first member to the left of member 2,

Referring to figures 10(b) and (o) and to equations (28)
and (29) the following equations for the moments at both

ends of the two members can be written;

Myp = Mg, = ;R (1 + G) (62)
Mao = 8, 0o = Rp(d + ) (63)

In which R, 1s defined as JB = V4,

Ih

Referring to Figurs 10(b) and summing moments about Bi
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Flgure 10, Two members of a continuous, elastically supported
beam-column with Joint C rotated and with Joints

A, B, and C deflected,
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Mg+ Mg, = Pi{yg=7¥,) =V, )y =0 (65)
By definition,

Referrinz to Fizure 10(c) and summing moments about Cg
Mpo + Mgp + Polyg = ¥p) + Vpglp = O (67)
By definition,
Vac = tx7p (68)
An equation summing forces in the y direction can be
written but it will not produce an equation independent of
equation (65).
Substituting equations (62) and (66) in equation (65)
and making a substitution using equation (11) results in
T1(yg = Fa) = tigya = O (69)
Substitutinz equations (63), (64), and (68) in equation
(67) and making a substitution using equation (11) results in

Sé"o( '
2 - nylyg - vg) + tyg3p= O (70)

The equations (69) and (70) are solved simultaneously
for y, and yg in terms of Rop.

Ryp = ¢~ 3B
L

Then,
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The carry-over factor denoted by Cyop is expressed as

‘HABz “Mpp = ~S (72)
%on = “¥pg BA 35%51 —h + 0p) ]

The negative sign is introduced on M,p and Mp, because all

of the moments are expressed as positive whon they are
clockwise on a free-body of the member; Myp and Mp, are both
shown as counterclockwise moments in Figure 10(b), therefore
the negative signs,

The numerator and dencminator of equation (72) vary
linsarly with & and, therefore, the carry-over factor Chor
is independent of X, The denominator has been defined as
the stiffness factor SZR for an X equal to one radian,
Therefore, the equation (72) can be simplified for the case

of ™ equal to one radian as

glte

Cbor = 51 l‘.%Tiﬂ %2 - 1R, (73)
m M Tta\l

A third type of carry-over factor will be derived using

Figure 11, The moments at the ends of member 2 have been
determined with the previous carry-over factor, Member 2 in
Figure 1l ocorresponds to member 1 in Figure 10, The joints
A, B, and C are held against rotation but are free to defleoct
subject to the elastic restraints of the supports, The
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FMgure 11, Two members of a continuous, elastically supported
besm=column with Joints A, B, and C deflected by
the rotation of a joint to the right of C.
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deflections are caused from a moment applied at a Joint to
the right of joint C, The carry-over factor will be denoted
as C,ope The subscripts c¢2R indicate that the carry-over
faoctor is for the rizht end of member 2, that a joint to the
right of the rizht end of member 2 has been balanced, and
that the carry-over factor chR multiplied by the induced

moment at the right end of member 2 gives the induced moments
at both ends of the first member to the left of member 2.
Referring to Pigures 11(b) and {(¢) and to equations
(28) and (29) the following equations for the moments at
both ends of the two members can be writtens
Mg = Mpy = S1R, (1 + Gy) (1)
Mpe = Mgp = SR,(1 + 0,) (75)

Referring to Figure 1ll(c) and summing moments about C:

2Mpy = PZ(YQ -¥g) = Vpiz = 0 (76)
By definitlion,
VBA s béLyB (77)
Prom equation (75),
Mpel
Jo = I = (78)

Substituting equations (77) and (78) in equation (76)
and making a substitution using equation (11) results in

Jg * MpeTolo (79)
t215>
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Referring to Figure 11l(b) and summing momonts about B
2Mpp = Polyp = Vo) = Vpglq = O (80)
By definition,
VaB = t117a (81)
Substituting equations (74) and (81) in equation (80)
and naking a substitution using equation (11) results in

t
T\ = Vg _?_1‘_!3_ (82)
Y1

Fron equations (79) and (82),
'
Rp=T3-Ja=lpo T2 Tz T (83)

2
- o=
S Iy ty Ty

The carry-over factor denoted by Co2R is expressed as

c ="“AB= 51 L2 To _i_ (8l)
o g Lt

Equation (8l;) 1s used to f£ind the induced moments in
any members to the left of member 1.
The equations that are derived in this section for use
in applying the series oriterion are used as follows?
1, Determine the carry-over factor G by using equation
() or (15).
2. Determine the stiffness factor S by usinz equation
(5) oxr (16).
3. Determine the translational stiffness T by using
equation (11) or (22).
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. Determine the quantities Rjp and Ry at each joint
by using the appropriate equation (39), (40), (55),
or (61),

S. Determine the stiffness factors S,p and S, at sach
joint usinz equations (41) and (42),

6., Determine the distribution factors, D.F., at the
Joints on the basis of the relative maznitudes of
the stiffness factors for the ends of the members
meeting at the joint,

7+ Determine the carry-over factors C,s Op» and C,
using the appropriate equation (43), (L), (73), or
(8L).

A short numerical example ia included in Appendix B to

demonstrate the use of the series criterion,

Stiffness Criterion

The stiffness oriterion is another one of the criteria
used to check the stability in a structure, The astiffness
oriterion states that at the critical bucklinzg load the
rotational and translational stiffnesses of every joint in
the structure are gero., This statement must be qualified,
however, since the Jjoint in question may be at a node or at a
point of maximum deflection on the bucklinz curve of the
beam=-column, If the joint is at a node, the translational
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stiffness may not be zero and if the joint is at a point of

maximum deflection, the rotational stiffness may not be zero.

In applying the stiffness criterion a procedure of triel

nmust be used; that is, the rotational and translational

stiffnesses must be computed for an assumed stress situation

and, in general, the stiffnesses computed may be different

than zero, Therefore, more generalized statements for the

stiffness criterion ares

1.

2

When an external clockwlise moment, under a condition
of equilibrium, is required at a joint to rotate

tho joint in a clockwise direction, there is an
indication of stability; but, when the external
moment necessary to hold the Jjoint in equilibrium

is opposite to the direction of rotation, then there
1s an indication of instability,

When a lateral force, under a condition of equilib-
rium, is applied at a joint and when the direction
of the deflootion of the joint i1s in the direction
of the applied force, there is an indication of
stability; but, when, under a condition of equilib-
rium, the direction of the force must be opposite

to the direction of the deflection of the joint,
then a condition of inotability is indicated,

The first of the two statements 1s essentially the same as

the series oriterion,
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The rotational and translational stiffnesses are deter-
mined, for example, for the right end of a member considering
the left end to be elastically restrained azainst deflection
and rotation by the members and supports to the left of the
member that is being considered, The rotational and trans-
lational stiffnesses of a member are the stiffnesses of one
end of the member, considering the member and the entire
structure beyond its far end, while the stiffnesses of a
Joint are the stiffnesses at the joint considering the
entire structure on both sides of the joint, The elastic
restraints supplied to the left end of the member by the
members and supports to the left are expressed in terms of
the rotational and translational stiffnesses of the right
end of the member immediately to the left, Therefore, the
procedure used is to start at the end of the structure and
work toward the joint by a set of computations for the right
end of a member based on the stiffnesses at the left which
have been previously computed foxr the right end of the
member to the left,

The stiffness oriterion as developed in this thesis was
applied to a beam-coluwmn that has a joint about which the
structure is symmetrical., The symmetry is required for the
physlical structure and also the stress situation in the
members, It was also assumed that the ends of the beam-column

are hinzed, Under these conditions the joint about which the
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structure i1s symetrical will be either a node or a point
of maximum deflection on the buckling curve, The procedure
was developed on this basis since the three-span pony truas

ugsed as an example satisfied the above conditions,

Derivation of Formulas for the Stiffness Criterion

Some additlonsl symbols will have to be defined, For
the followling definitions the structure has been ocut just to
the rizht of joint B and only that part of the structure to
the left 1s considered. The rotational stiffness, Sy .o of

a member 1s the moment per unit of rotation necessary to
rotate Jjoint B when joint B is not permitted to deflect,

and all of the Jjoints to the left of B are free to deflect
and rotate subject to the elastic restraints of the members
and supports; in this ocase, sByz 1s the force per unit of
rotation neceasary at B to prevent any deflection of joint B
when 1t 1s rotated, The translational stiffness, SBVY' of a
member i1s the force per unit of deflection necessary at B to
deflect jJoint B when B 18 not permitted to rotate, and when
all the Joints to the left of B are free to deflect and
rotate subject to the elastic restraints of the members and
supports; in this case, Sﬁvz is the moment per unit of
deflection necessary to prevent rotation at joint B when it
1s deflected.
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The sign convention indicated in Figure 12 was used
throughout the followins derivations, A moment on the right
face of a free body is considered positive when clockwise,

A shear on the right face of a free body is considered
positive when acting upward., An angle of rotation is
considered positive when clockwise, A deflection 1is
considered positive when the jolnt is deflected upward,

The quantities Sp,.» Sy, séyz’ and Sp . were derived
first for the case shown in Figure 13(a). The joint at A is
hinzed and fixed against translatlon, and the member AB is
the first member in a series as is shown in Figure 6(a).

Referring to Figure 13(b) and to equations (28) and (29)
the following equations for the moments at both ends of the

member can be writtent

Myp = 8,(= 6, + clcx) =0 (85)
Mg, = 83(x = ¢ 6,) (86)
Solving equation (85) for 6, results in
Op = 0 (87)
Substituting equation (87) in equation (86) results in
Mgy = § (1 = D) (88)
By definition,
M
Spyy = =22 = 8,(1 - %) (89)

Referrinz to Figure 13(b) and summing moments about Ag
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Figure 12. 8Sign convention for the stiffness criterion,
Positive quantities shown,
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Figure 13, Firast span of a beam-column member with
End-Joint A hinged.
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Mp, = Vpalq = 0 (90)
Substituting equation (88) in equation (90) results in
Vpa = f-':li (1 - cg) (91)

By definition,

tee
=v s 1-2281 -
Spoe '%ai.'ll‘ Cq) _IT(I G ) (92)
Referring to Figure 13(c) and to equations (28) and (29)
the following equations for the moments at both ends of the

member can be written:

Map = 8 [= 6+ (L(Elch)é)]v:o (93)
Mgy = 8y [~Gy +1:°1<5] (9L)
[01 A o
Solving equation (93) for 6, results in
6, = (1+06)d (95)
51
Substituting equation (95) in equation (94) results in
s”'
M,=1_(1-06)6 (96)
Sl 7Y

By definition,
¢ M S' 1
Spys = -f-a = _%_ (2 - 0q) (97)
1
Comparing equations (92) and (97), Sﬁyz is found to
equal Sp., and therefore either quantity will hereafter be

referred to as SByz'

Referring to Figure 13(c) and summing moments about A:
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Mpp + tpd1y = Vpylp = 15 =0 (s8)

Substituting equations (9}) and (95) in equation (98)

results in
LB A
VR = tps + & - (3,08 (99)
Lg
By definition,
148
Spyy = BA=tgem -2 (40 (100)

Next, a more zeneral case was taken as is shown in

Figure 1lj., The quantities Sggg? SCyz’ and Scyy were derived
for joint C when the left end of the member, joint B in this

case, 1s elastically restrained against rotation and deflec-
tion instead of hinged as in Figure 13,

Referring to Figure 1i(b) and to equations (28) and (29)
the following equations for the moments at both ends of the

member can be writtent

(1 + C,)
MBO = Sa [9 + 02°'~ - IE 2 YB] (101)
(1 +0C,)y
Maw = S, X 4 cae - 2 B] (102)
CB 2 [ i

Referring to Figure lli(c) and combininz the quantities
by the principle of superposition, the moment and shear at B
can be expreased in terms of sBzz‘ sByz’ and SBwy‘

Mp, = 8p,,0 + SpeeYB (103)
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Figure 1,

L - Le

Two members of a continuous, elastically supported
beam-column with Joints A and B restrained against
rotation and deflection, and with Joint C
restralned against rotation and fixed against
deflection,
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From the assumed sign convention Mp, = = “BA‘ Therefore,
=50 + 8,0 =52 gy (108)
2
Referring to Figure 1;(b) and suming moments about Ct

Substituting equations (101) and (102) and the relation-

= SByg® = Spyy¥s

ship Vpg = Vg, in equation (106) results in

[ R ]
si''> + si''e - [232 - pa],B -
Lo

[883778 + Spyy 6] L, =0 (107)

Making the followinz substitutions:

Ap = S5 + Spyy (208)

= gt
B2 'TZFE' - Spyy (109)
(110)

Dy = Ty + 3337
and using equation (11), equations (105) and (106) become

Spp X + A, 8 = Boyg =0 (111)

gt

-§;u+826 - Doyg = 0 (112)

Equations (111) and (112) are solved simultaneously for

© and yp, and these values are subastituted in equation (102)
to solve for Mgpe The moment, Mgp, by definition, is Sg,,X.
The quantities © and yp vary linearly with respect to = and
therefore Msp varies linearly with &,
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M
S = °CB= 8, %+
Cez ~ = 2

(s,6,)%D, = 28 czﬁé'_'.sz+<‘°’5") %4
22’ 2t (a3
1;;- ADp
By definition, Vgpg = Sm Ke Sudbstituting for © and
¥yg in equation (104) results in

= Vog=-V
So T 27T

gitt 01
SpyzS5202T2 - san-%; (A; = 850;5) = Sp,, S2 B

B - AD,
(114)
Referring to Pigure 15(b) and to equations (28) and (29)
the following equations for the moments at both ends of the

member can be written:

Mpg = S5 [-e + (1 + Cp) 61'2. YB] (115)
Mgp = Sp [ = 020 + (14 Cp) rSL; Ys] (116)

Referrinz to Figure 15(c) and combininzg the quantities by
the principle of superposition, the mament and shear at B
can be expressed in terma of Spgg? SBY!’ and SB”.
Mpa = Spyz¥B = SBys © (117)

VBA = SmyB - sByze (118)

From the assumed sign convention Mgy = « Mp,. Therefore
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Figure 15, Two members of a continuous, elastically supported
beam-column with Joints A and B restrained against
rotation and deflection, and with Joint C
restrained against deflection and fixed against
rotation,
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S."

Referring to Figure 15(b) and suming moments about Ci
Mpg + Mgp = Po(& = yp) = Vpglp = 0 (120)
Substituting equation (115) and (116) and the relation-

ship Vg, = Vp, in equation (119) results in

-s3'"e + [22" - rz] (6 -yp -

(s )L, =0 (121)

Byy'B " “Byz~ 2
Making substitutions from equations (1038), (109), (110),
and (11 ), equations (119) and 121) become

1"

A0 + Boy -._é._s 5 =0 (122)
B 2

T28 - Bze - DZYB =0 (123)

Equations (122) and (123) are solved simultaneously for ©
and yp, and these values substituted in equation (118) to
solve for Vpse The value of Vg, varies linearly with <,

Referring to Flzure 15 and suwuming forces in the y
direction:

Vpg + tgd = Vgg= 0
Vpo = Vg and by definition Vgp 18 Sger & o  Therefore,

N 2
Seyy = __g_g =to+|\ - Syt T2(Spyg)” = TaASpry (124)
B - 450,
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By definition, M oB = Cyzé o Subatituting for © and
vg in equation (116) results in

S = HCB.—_
Cyz 3

s"' "'
sByzSZOZTZ Byy (A, = 8,0,) -'15“‘ Bys D2

Bg - A0,

(125)

By comparing equations (92) with (97) and (11}) with
(125) a reciprocal relationship is found to exist for the
conditions used in the derivations of these equations, This
reciprocal relation can be stated as follows:

When a moment is applied at the right end of a member
that 1s elastiocally restrained against rotation and deflection
at the left end, the force per unit of rotation required to
prevent deflection is numerically equal to the moment per
unit of deflection required to prevent rotation when the
right end of the same member is deflected by a force,

The equations derived in this section for use in
applying the astiffness criterion are used as follows:

l. Determine the rotational stiffness of the end of a

member by using equation (89) or (113).
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2. Determine the translational stiffness of the end of
a member by using equation (100) or (124).

3. The quantity from equation (92) or (125) is used
along with the stiffnesses obtained from equations
(89) and (100) or (113) and (12}) in subsequent
computations to obtain the stliffnesses of the far
end of the next member,

The equations for rotational and translational stiff-
nesses, as derived, can be used to determine joint stirf-
nesses under the following conditions:

1. The equations for rotational stiffness can be used
at the end of the beam=column when the end 1is
hinged and fixed against deflection and at a joint
that is located at a node on the buckling curve,
The rotational stiffness at the hinged end of a
beam=column 1s determined directly with the equation
for the rotational stiffness for the end of a
member, The rotational stiffness at a joint that is
located at a node on the bucklinz curve is obtalined
by adding algebraiocally the rotational stiffness
obtained for the ends of the members that meet at
the joint,

2. The equations for translational stiffness can be
used at a Joint that 1s located at a point of maxi-

mun deflection on the buckling curve, The
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translational stiffness of the joint is determined

by adding alzebraically the translational stiff-

nesses obtained for the ends of the members that

meet at the Joint, being careful to add only once

the translational stiffness of the elastic support

located at the joint.

A numerical example is lncluded in Appendix B to

demonstrate the use of the stiffness criterion,
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DESIGN AND STRESS DATA FOR THE THREE-SPAN
CONTINUOUS PONY TRUSS BERIDIE

The three-span continuous pony truss bridge that was

used as an example for the application of stability anslysis

was designed by the Iowa Hixhway Commission. The pertinent

design data neocessary for the stabllity analysis as pre-

viously outlined are shown in Figure 16,

The axial strosses were detormined in this continuous

truss on the basis of the usually accepted assumptlions used

in bridge design. These assunptions are:

1.

-

3.

Se

The bridze 1s made up of a number of planar struc-
tures and each part is analyzed independently.

The superimposed loads are transmitted from the
roadway to the trusses by simple beam action of the
floor beans,

The end reactions of the floor beams are rezarded as
applied loads on the vertical trusses which are
analyzed as continuous trusses,

The joints are pin-connected,

The dead load 1a applied as equal panel loads at the

same points of application as the live loads,
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Figure 16, Pertinent design data of the three-span
continuous pony truss bridge.
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Based on the above assumptions, the structure analyzed
was simplified to a continuous planar truss over four sup=-
ports. The structure, therefore, is externally statically
indeterminate to the second degree, The reactions for a
unit load placed at the lower chord panel points were detere
mined using the strain-energy theory, With the reactions
determined, an influence table was made for the stresses in
the end post and top chord members; these members make up
the beam=column to be analyzed for stability. The influence
table for the stresses is ziven in Tablel; a plus sign
indicates a tensile stress and a minus aign indicates a
compressive stress, Since the structure is symmetrical, the
stresses are tabulated for the members on one side of the
center-~line of the span,

The dead load stresses in the members were computed
usinz a dead panel load determined from the desizn drawing
of the Iowa Highway Commiasion., An estimate of the total
dead weight was given and this quantity was assumed to be
divided equally amonz all of the lower chord panel points of
the bridge., On this basis, the dead panel load 1is 31.23
kips,

The dead load stresses in the top chord members are

tabulated in Table 2.

The live load stresses in the truss members were deter=-

mined using the loadinz requirements of the Standard Highway
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Table 1, Influence Table for the Stresses in the End Post
and Top Chord Members
Load Members _

At T LyUp 1,0, A U0, U0, ToU,
I -1.1872 -0,624,0 =-0.0480 +0,2098 +0.1492 +0.0386
L, -0,8257 =1.2686 =0.1373 +0.3746 +0,2664 +0.1583
Ly «0.4927 -0,7570 =0.3139 +0.4436 +0.3156 +0.1876
Iy, -0.2216 =0,3406 =0,6811 +0.3048 +0,2171 +0.1294
Lg, +0.1612 +0.2477 +0.4954 ~0.5048  -0.3530 =-0.2012
L, +0,2610 +0,4010 +0.,8021 <-0,0200 =-0.8652 =-0.510l;
Lg 40,2957 +0.4543 +0,9086 +0.,2441 ~1,5395 =0,9230
Lg +0.2930 +0.4502 40,9005 +0.3756 -1.1243 -1.h242
Lo  +0.2618 +0.4022 +0.8045 +0.4056  =0,794} =1.99LL
Iny  +0.2151 +0.3305 +0.6610 +0.3761 -0.5240 -1.h2h2
I,  +0.1609 +0.2472 +0.L494ks +0.3098 -0,3066 -0,9230
I3 40,0981 +40.1507 +0,301L +0,1993 =-0.1555 =0.510k
Ly, +0,046l +0,0713 +0.1426 +0,1024 =0.0494 =0,2012
Lyg «0,023 =0,0360 =0.0720 =0,0461 +0.0416 +0,129L
Lyq -0,03}5 «=0.0530 =0,1061 =~0,0685 +0,0595 +0.1876
L,g  =0.0292 -0.0449 =-0.0898 =~0.0581 +0.0512 +0.1583
Iyg  =0.0164 =-0,0252 =-0,0504 =0.0326 +0.0280 +0,0886

-2.8307 =3.1493 -1.,4,986 ~0,7301 ~5,7119 -8,1120
+1.7932 +2.7551 +5.5105 +3.,3457 +1.1286 +1,1278
Total -1,0375 =0.3942 +4.0119 +2,6156 =4,5833 =6.9842
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Table 2, Dead Load Stresses

Stress - kips

Member LOU1 U’1U3 Usug USU7 U7U§ U9q10

32,40 =12,31 +125.29 +81.68 -143.1 =218.12

Specifications (1), These Specifications require an equiva-
lent loading consisting of a uniformly distributed load plus
a concontrated load placed on the bridge so as to produce a
maximum stress. The magnitude of the panel load computed
from the uniformly distributed load is 11.41 kips; this
panel load may be placed at as many panels as necessary to
produce a maximum stress, The magnitude of the additional
live panel load computed for the concentrated load is 21,39
kipa; this panel load may be placed at one or two panel
points depending on the location of the member in which the
stress i1s being computed. In computing the panel loads due
to live load the lane loadinz was shifted out of its half
of the roadway width; the bridze was designed under this
condition, The stresses due to impact are taken as a per
ocent, dependinz on the loaded length, of the live load
stresses,

In makinz a stability analysis, the stresses in all the
members must be determined for one position of the live load;

therefore, only a few of the members will bo stressed to
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thelir maximum live load stress,

The two conditions of loading that will be considered
for the stabllity analysis are: The loadiny that will pro-
duce a maximum compressive stress in the member 0103; and
the loading that will produce the maximum compressive stress
in the member Ugly,. Hrennikoff (17) has shown that these
conditions would be critical as far as bucklini of the top
chord is concerned,

The poasition of the live load that produces a maximum

compressive stress in U1U3 1s obtained by placing the live
panel load from the unifomly distributed load at all of the

panel points of the two end spans and by placinz the two
congentrated loads at Ly and Ing to maintain a condition of
symmetry. The live load and impact stresses In the end post
and top chord members for this placing of the live load are
tabulated in Table 3,

Table 3, Live Load 3tresses for the Position of Live Load
that Produces a Maximum Stress in the Member UIU3

Stress = kips
Unif, L. L. =32,30 =35,93 =17.10 +12,86 412,88 +12.87

Conce Lo L, =18.29 «28,10 = U.86 46,77 +6.79 +6.77
Total =50,59 '6h003 -21,96 +19063 +19, 67 +19061'-

Impact ~12,65 =16,01 =~ 5,49 +4.91 +4.92 +L4.91
Total L. L. =63.,2 =80.04 =27.45 +2h.54 +24.59 +24.55
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The position of the live load that produces a maximum
stress in the member U901o is obtained by placing the live
panel load from the uniformly distributed load at all of the
panel points in the center span and by placing the one
concentrated load at Inge The live load and impact stresses
in the end post and top chord members for this placing of
the 1ive load are tabulated in Table L.

Table lj, Live Load Stresses for the Position of Live Load
that Produces a Maximum Stress in the Member UQU&Q

Stress =« kips
Member Loy U Uy %% UgUs UnUg UeYg
Unif, L. L., +20.46 +31.44 +62,87 +16,98 =65.17 - 92.56
Conc. L. L, +5,60 +8.60 +17.21 48,68 =16,99 - U2,66
Total +26,06 440,04 480,08 +25,66 -82,16 135,22

Impaot +4. 74 +7.28 414,56 44,66 -1 ,94 - 24,58
Total L., L. +30.80 +47.32 +94.64 +30.32 =97.10 =159.80

The top chord members will be analyzed for stability
for astress conditions computed on the basis of a load factor,
applied to the live load stresses, that will produce a
maximum unit stress in the members that is lessa than the

yield strength of the materilal,

A load factor of 6 1s used for the position of live

load that produces a maximum stress in the member UlUB‘ The
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results are tabulated in Table 5.

A load factor of 3.5 is used for the position of live
load that produces a maximum stress in the member U9Uio.
The results are tabulated in Table 6,

Table 5, Combined Dead Load Plus the Load Factor Times the
Live Load for Maximum Stress in U1U3*

Stress = kips
Member LoUy U0y UqUg UgUs Ul UgYy
D. L. - 32,40 - 12,31 +125.,29 +81.68 -1,3,1 -218,12
(Le L.)(6)=379.451 =§jB0.24 <164.70 +147.2; +147.54 +147.30

Total -l]ll.ah. -,-'-92055 - 39.1!-1 "’228.92 '.'L'-oh.o - 70.82
*Valuos obtained from Tables 2 and 3

Table 6, Combined Dead Load Plus the Load Factor Times the
Live Load for Maximum Stress in U9U10#

Stress = kips

Momber Loly U Uy U3l UgUsy UqUg Uglhq
D. L. =32.40 =12,31 +125,29 481,68 -13,1 -218,12
(L, L,)(3.5) +107.80 +165.62 +331.2l +106,12 =339.85 =559.30
Total +7501i-o "'153'31 +h56o 53 +187o80 “‘,-l-82-99 "777-’42

#Values obtained from Tables 2 and l,
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The stresses given in Table 5§ and 6 will be used in the
stability analysis of the top chord member. For the stresses
given in Table 5, the maximum unit stress occurs in member
U‘lU3 with a value of 31,400 psil, For the stresses ziven in
Table 6, the maximum unit stress occurs in member U9U10 with
a value of 29,200 psi. Since the yleld strength of struec-
tural steel is approximately 35,000 psi., all of the unit
stresses in the top chord members are within the yield
strength of the material,
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STABILITY ANALYSIS OF THz TOP CHORD OF THE
THREE-SPAN CONTINUOUS PONY TRUSS BRIDGE

The series and stiffness criteria were applied in the
stability analysis of the top chord of the three-span con-
tinuous pony truss bridge shown in Figure 16,

The top chord of a three-gpan continuous truss bridge
has rezions of tensile and compressive stress, The regions
in which the members have a oompressive stress can be ana-
lyzed for stability in the same manner as a structure in
which the entire top chord is in compression provided that
the series and stiffness criteria are applied at one of the
Joints in the region of compression, The regions of tensile
atrosa‘adjoinins the rogions of compressive stress have a
stiffoning effect on the members in compression and have a
tendency to reduce the possibility of Iinstability.

The stresses in the top chord members were computed, in
the preceding section, for two live loading conditions, The
top chord was checked for stabllity for these two atreas
situations in the following manners

1. For the loading condition that produces a maximum

compressive stress in the reglon UlU3, the seriles
criterion was used by applyinz an external moment

at the Joint Lg and the stiffness criterion was used
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by determining the rotational stiffness of the Joint
Lge

2. For the loading condition that produces a maximum
compressive stress in the reglon 09010’ the stiff-
ness coriterion was used by determining the rota-

tional and translational stiffnesses of the joint

Yo°

Elastic Properties of the End Post

The procedures of stability analysis as presented in
this thesis have been developed for a member that forms a
straight line, The elastic properties of the sloping end
post member Lol of the pony truss must, therefore, be ex-
pressed in terms of 1its horizontal projection,

The end post member, L,U;, is shown in Figure 17(a).
The member has an actual length of L, and & horizontal pro-
Jeotion of length L, The quantities S, C and T are deter~-
mined for the horizontal projection of the member as shown in
Figure 17(b).

In the following equations a quantity like M, represents

a moment about the z-axis and o, represents an angle about

the z-axis, both the moment and the angle are in the x-y
plane,

Applying a moment, Figure 17(b), of M, at Uy producing
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>

Figure 17, Transfer of elastic constants of the end post
member to horizontal equivalents,
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an angle of rotation of &g, results in
X, = O(zCoslﬁ (126)

™y = X, Sing (127)

The moment M, can be expressed as

My = MyCos 8 + MSins (128)

in which
My = S, O, (129)
M, = Sy kg (130)

The quantity S, 1s the stiffness factor determined from
equation (5) using the inclined length of the member, The
quantity Sy is the torsional atiffness of the member, A
solution for the torsional stiffness of the end post member
is included in Appendix C.

Subatituting equations (126) and (127) in equations
(129) and (130), and substituting these results in equation
(128) results in

M, = S5,X,00822 + Sy X 481n22 (131)

The stiffness factor, S, is the moment per unit of

rotation; therefore,
s=M = SrCOszﬂ + Sttha,B (132)

Xz
The moments induced at Iy, Figure 17(a), can be expressed

M} = CiMp (133)
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The quantity Cy is the carry-over factor determinsd from
equation (li) using the inclined length of the member,

The moment M, can be expressed as

M) = M;Oosf3 - MQSInr9 (135)

M! = C38,, o Cos28 = 8y x, Sin?s (136)

The carry-over factor, C, is therefore

c=HMe 034S,00824 = 8,81n2< (137)
M, S.Cosc & + 843in= g

The translational stiffness, T, of the end post com-
puted on the basis of the inclined length i1s also the
translational stiffness, T, for the horizontal projection

of the member,
Stiffness of the Elastic Supports

The top chord members are elastically supported in a
lateral direction at the panel points by a frame composed of
the verticals of the truss and the floor beams framing into
the verticals,

A 1ine diagram representing the frame at each panel
point is shown in Pigure 18(a). The force, P, per unit of
deflection, & s 18 defined as the stiffness, t, of the

elastic support,
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The moment-area method is used to determine the value of
the stiffness of the olastic support, Using the E!'.t(" diagram
shown in Fizure 18(b), the equation for the deflection is

& =P 4 24 , P4 h 4
= EI, 2 3 EI, 2 (138)
1 2
Therefore,
3 1
& a3 ha®

®I, 2L
The atiffness of the elastic support at Us and UlS is
detormined with equation (139) and information from Figure
16, The quantities required for equation (139) are
I, = 1165.8 in bt
T, = Mh2.2 1n b
E = 29,000,000 psi.
d = 11,604 ft. (11'=72)
h = 31,833 rt. (31*-10)
resulting in t = 22,8}y kips per inch.
The stiffness of the elastic supports at all of the
other intermedlate panel points, at which Iy = 170.9 1n.uo
is 5,03 kips per inch,
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Numerical Results of Stability Analysis

First, the top chord members wore checked for stability
using the stresses ziven in Table 5. These stresses were
determined from the loading condition, with a load factor of
6, that produced a region of compressive stress near the end
of the span with a maxirmum value in the member U1U3.

If the region in compression buckles, the member at L,
must rotate, Therefore, the series and stiffness criteria
were applied to Jjoint Lj.

The quantities that were computed for use in applying
the series criterion are tabulated in Table 7. A moment of
100 inch kips was applied at Joint Lgy. All of the joints
except Ly were balanced and the summation of the moments
carried back to Ly was found to be 29.7 inch kips resulting
in a value of the factor r of 0,297.

The quantities C, S, and T in Table 7 for the members
wore used in applyinz the stiffness criterion, The solution
was made by starting at one end of the strueture and working
to the fer end. The rotational stiffness of joint L, in con-
siderinz the entire structure to the right, was found to be
66,000 inch kips per radian of rotation,

Second, the top chord members were checked for stability
using the atresses given in Table 6, These stresses were

determined from the loading condition, with a load factor of
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Table 7. Computed Quantities for Uss in Applying the Series and Stiffness Criteria
Member I Stress c S T S, Sg G‘L R
kips 8 in in, id
iné  kips onie e ok gl

I'Oul 537.80 <411.84 0.508 152,480 12.43 94,080 141,680 0.203 0
K Us 537:80 -h92.55 0.527 334,590 28.80 165,990 162,920 Og0b6 0
UaU, 537.80 ~492.55 0.527 334,590 28.80 164,A50 163,940 0,039 0
030" 640.73 «39.41 0.502 412,060 37.98 205,340 208,A40 0.0 (0}
Uslg 528,71 +228.92 0.A88 346,200 33.07 182,380 204,020 0.028 O
Uglp 528,71 4228,92 0.488 346,200 33.07 197,840 196,290 0.105 O,
"708 6T..33 *h0 0,500 432,770 40.09 209,k60 210,760 0,033 -0,
0809 671.33 *heh0  0.500 A32,TTO 40.09 211,410 212,710 -0.025 -0,
09010 9860“ -70.82 0.502 633]720 ”037 262;500 263:‘&50 ‘00203 -Ol







Applying the Series and Stiffness Criteria

T ! . %W % % G Ca G

0 12.43 95,080 141,680 0,203 0.470 0,503

0 28,80 165,990 162,920 0,046 0,029 0.466 0.492  0.696 0.742
0 28.80 166,k50 163,940 0,039  0.035 0.452 0.5k 0.679 0.683
0 37.98 205,30 208,M0 0.0 0,016 0,397 0.378 0,780 0,731
50 37.9¢ 27,200 191,110 0,055 =0.073 0.166 0,32k 0,310 0.685
D0 33.07 182,380 204,020 0,028 0,131 0.319 0.178  0.69% 0.3k4
00 33,07 197,80 196,290 0,105 0,097 0.371 0.383 0.7h0 0,769
0 40.09 209,460 210,760 -0.033 0,027 0.347 0.338 0.78 0.695
70 40,09 211,410 212,700 -0,025 ~0.016 0.36L 0,350 0.740 0,73
20 58.37 262,500 263,450 <-0,203 -0,197 0.298 0,290 0,726 0,702
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Table 8. 2,‘;’1“;‘3;:3,%;;‘222.12; for Use in Applying the
Member I Stress c S T
in Ut kips radkin? E%%%
Lol 537.80 +75.40 0.h464 161,610 14.93
U, U, 537.80 +153,31 0.492 350,270  33.11
UpUs 537.80 +153,31 0,492 350,270 33,11
U3, 640,93 +456.53 0.481 23,900  L41.29
B, Ug 640,93 +456,53 0.431 423,900 41.29
UgUg, 528,71 +187.80 0.490 5,230 32.79
UgUs 528.71 +187.80 o0.490 35,230  32.79
UaUg 671.33 =482,79 0.521 420,900 36,8l
UgUg 671.33 -482.79 o.521 420,900  36.8L
Ul 0 986,04 =777.412 0,523 616,500 53,6l
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3.5, that produced a rezion of compressive stress in the,
center portion of the span with a maximum wvalue in the
merber U9U10°

If the rezion in compression buckles, the joint at Llo
would be either a point of maximum deflection or a point of
a node on the deflection curve due to the symmetry of the
structure and the stress condition,

The quantities that were computed for use in applying
the stiffness criterion are tabulated in Table 8. The
solution was made by starting at one end of the struscture
and working to the Joint Ljge In considering the entire
structure to the right and left of joint Lyn,s the rotational
stiffness of joint Ly, was found to be 331,400 inch kips per
radian of rotation and the translational stiffness of Jjoint
Ino was found to be 11.31 kips per inch of deflection.

Discugsion of Numerical Results

In using the series criterion in checking for stability
for the first condition of loading, the stability factor, r,
was found to be 0.297. When the stabllity factor is less
than one the moment distribution serles converzes and a
condition of stability 1is indicated., In makinz the moment

distribution solution the moments that were carried over to

the joints beyond Uy were of such magnitude that when these
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Joints were balanced, no moment was carried back to joint Lo
and therefore did not contribute anything to the series
solution. Therefore, for this particular solution, only a
part of the structure needed to be considered in applying
the series criterion at joint Lge

In using the stiffness criterion in checking for
stabllity for the first condition of loading the rotational
stiffness of jolnt Ly was found to be 66,000 inch kips per
radian of rotation; the moment was found to be in the same
direction as the rotation indicating a condition of
stability which agrees with the series solution,

The serlies criterion solution can be used to obtain the
same numoriocal result as was obtalned from the stiffness
criterion solution, For the left end of member Loul. the
stiffneas factor, Sy, as given in Table 7 is 94,080 inch
kips per radian of rotation; this is the moment necessary to
rotate joint Ly when the other joints are permitted to
deflect subject to the elastic supports but are fixed azainst
rotation. In the series solution it was found that for each
100 inch kips of moment applied at Lo, 29.7 inch kips was
carried back from the other joints leaving 70.3 inch kips when
all of the joints except Lp had been balanced., Therefore,
the moment necessary to rotate the member at Lo one radian
would be 0,703(94,080) = 66,140 inch kips which is essentially
the moment determined from the stiffness criterion solution,
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Since the same information can be obtalned by the stiff-
ness criterion as was obtained from the series criterion,
only the stiffness criterion was used in checkinz for
stability for the second condition of loading, The rota-
tional stiffness of joint Iy, was found to be 331,400 inch
kips per radian of rotation, The moment was found to be in
the same direction as the rotation indicating a condition of
stability if the structure buckles with a node at L;qo on the
deflection curve, The translational stiffness of Joint Inq
was found to be 11,31 kips por inch of deflection, The
force was found to be in the saeme direction as the defloction
indicatinz a condition of stability if the structure buckles
with a deflection curve which has a point of maximum deflec-
tion at LlO' Therefore, the top chord members were found
to be stablo for the possible dbuckling curves,

From the above results, it can be concluded that the
top chord would not buckle with load factors which produce
stresses in the members that are within the elastic strongth

of the material,
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SUMMARY AND RECOMMENDATIONS
Sumary

The object of this investigation was to make an analy-
tical study of the elastic stabllity of the top chord of a
three-span continuous pony truss bridge,

The top chord and end post members were considered
hinzed and fixed against lateral deflection at the ends of
the span and elastlically supported azainst lateral deflection
at the intermediate panel points., The elastic supports were
provided by the oross frames composed of the verticals of
the truss and the floor beams framing into the verticals,

The entire effect of the dia:;onal web members and the tor-
sional stiffness of the vertical mombers were nezlected,
Also, 1t was assumed that the top chord members were not
deflected out of a straizht line, when viewed from above, by
the loads applied to the floor system,

Two criteria, series and stiffness, were developed and
wore used as a basis for checking the elastic stabllity of
the top chord members,

The serles in the sories criterion procedure is obtained
from a moment distribution type of solution, Equations were

derived for the necessary constants required for a moment
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distribution solutlion of a beam=-column elastically supported
against deflection at intermediate points, When the moment
distribution series converges a condition of stability is
indicated, but when the series diverzes a condition of
instabllity is indicated.

Equations were derived for use in applying the stiffness
criterion to obtain the rotational and translational stiff-
nesses of one end of a member consideriny the entire struc-
ture beyond its far end, The equationa, as derived, for the
stiffmesses for the end of a membor can be used to determine
the rotational stiffness of the hinged end of a beam-column
and the rotational and translational stiffnesses of a joint
provided that thoe structure and stress conditions are exactly
the same on both sides of the joint, The principles of the
stiffness criterion are:

l. When an external oclockwise moment, under a condition

of equilibrium, is required at a Joint to rotate the
Joint in a clockwise direction, there 1s an indioca-
tion of stabllity; but, when the oxternal moment
necessary to hold the Jjoint in equilibrium is
opposite to the direction of rotation, then there is
an indication of instabllity,

2« When a latoral force, under & condition of equili-

brium, is applied at a joint and when the direction
of the deflection of the joint 1s in the direction
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of the applied force there is an indication of

stability; but, when, under a condition of equili-

brium, the direction of the force must be opposite

to the direction of the deflection of the jJoint,

then a condition of instability is indicated.

The process of determining the load factor that produces
a stress condition which causes buckling must be one of
trial; that is, the structure must be analyzed for stablliity
with various load factors untll a condition of instabllity
1s found or until the stresses roach the yleld stress, In
applying the serios and stiffness ocriteria, the buckling
curve corresponding to the minimum load factor must be
obtained as was demonstrated in the 1llustrative example
included in Appendix B, If the beam-column buckles with a
node at one of the joints, the value of the translational
stiffness of that joint may indicate a condition of
stabllity; and, if the beam-column buckles with a point of
maximum deflection at one of the joints, the rotational
stiffness of that joint may indicate a condition of stabllity,
and the stabllity factor detormined with the use of the
series criterion may indicate a condition of stability.
Therefore, any results obtained by the use of the series and
stiffness orlteria must be carefully interproted,
Of the two oriteria, series and stiffness, the stiffness

criterion involves a smaller mmber of equations and when it
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can be uged it is the more practical of the two procedures,
The series criterion can be applied to any Joint and there-
fore can be considered as the more genersal procedure of the
two, However, only the rotational stiffness of a Joint can
be checked by the series criterion procedure,

In checking the top chord of the three-span continuous
pony truss bridge, the series and stiffness oritoria must be
applied to one of the joints in the rezion of compressive
stross, The rezions of tensile stress adjoining the rezions
of compressive stress have a stiffening effect on the mombers
in compreasion and have a tendency to reduce the possibility
of buckling.

A procedurc was presented to determine the elastic
constants for the inclined end post membor in terms of the
horizontal projection of the member, A similar procedure
could be uged to include the effect of the othor diazonal
web members 1n an analysis for stability. If tho effect of
the diaonal wob members were included, the resistance of the
top chord members to buckling would be increased,

The top chord of the three-span continuous pony truss
was checked for stability for two conditions of live loadingz
and the member was found to be stable with astresses in the
top chord member which were within the elastic strengzth of
the material.



91

Recommendations

On the basis of the work that has been done in this
thesis the following extensions are suzgested,

1., Determine the effect on the stability of the top
chord member of the live load deflectlons of the floor beans
and the resulting lateral movements of the tops of the

vertical members,

2. Determine tho forcos which act at the top of the
vertical members of the latoral cross fraues as a result of
the resistance offered to deflection by the top chord of
the vertical trusses,

3. Extend the application of the series and stiffnesas
oriteria to the inelastic range of stress in the material,
This might be used along with the principles of limit design
to reduce the present factor of safety of desizgn and thereby
utilize the structural material more officiently.

i, Consildor the effects on the stability of the top
chord member of the torasional reailstance of the verticals
and the ontire resistance of the diaizonals,

5. Determine what approximations can be made in
applying the series and stiffness criteria to any given
structure, Same indication of this was given for the par-

ticular structure used as an example in this investigation,
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6., Extend the stiffneas criterion so that the rota-
tional and translational stiffnesses can be determined for

an intermediate joint that 1s not at a point of symmetry

in the structure,
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ILLUSTRATIVE EXAMPLE

The following example is introduced to demonstrate the
use of the serles and stiffness criterla, as presented in
this thesis, to check the stabllity of a continuous beam-
column shown in Fizure 21(a). The joints A and E are hinged
and fixed azainst deflection, joints B and D have elastic
supports with a stiffness of 1.0 kip per inch against deflec-
tion, and joint C has an elastic support with a stiffness of
0.12 kips per inch agzainst deflection, The individual
members have a length of 100 inches, a moment of inertia of
10 1n.h, an axial stress of 100 kips compression, and a
modulus of elasticity of 29,000 kips per sq. in,

The factors needed for the stability analysis using the
serios criterion are tabulated in Table 9. The quantities
computed in intermodiate calculations preceding the deter=-
mination of the distribution and carry-over factors are also
siven in Table 9, Units of inches and kips were used in the
calculations,

The first solution using the serles criterion 1s shown
in Table 10. An external moment of 100 inch kips was applied
at Joint A, All of the joints except A were balanced and
then a summation was made of the carry-~over momonts at A,

Only a part of the solution is shown since the joints had to be
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Table 9, Computed Quantities for Use in Applyinz the Series

and Stiffness Criteria

¢ A B v D
1.0 0,12 1.0

c 0.605 0.605 0.605 0,605

S 10,210 10,210 10,210 10,210

st 16,390 16,390 16, 390 16,390

7 2.278 2,278 2,278 2.278

t! 1.891 | 3.278 1.464 |1.h6 3.278 | 1.891

™ 1.033 2.278 | 0.891 1.34h |[1.34 0.891| 2,278 1.033
R 0.393 0.239 | 0,344 0.295 [ 0.295 0.34)| 0.239 0.393
S 3,770 6,293 | 4,573 5,376 {5,376 ML,573| 6,293 3,770
Cq | =0.0698 0.359|0.118 0,250 | 0,250 0,118 [ 0,359 -0,0698
Cy, 0,669 1.235 0.899 |0.899 1.235 0.669
Co 0.918 0,695 | 0,695 0,918

D.Fe| 1.000 0.579|0.421 0.500 {0,500 O0.421( 0.579 1.000




Tabls 10, Series Solution for a Moment Applied at A
.
G | © 0.918 0.695| 0.695 0.918
Co 0,669 1.235 0.899| 0.899 1.235 0.669
c, -0,0698 0.359| 0.118 0.250| 0,250 0.118{ 0,359 -0,0698
D.F. 1.0 0.579] 0,421 0,500 0,500 0.421| 0.579 1.0
+ ~6.98 |+66.,90 +66.90 [+61.41 +61.b), |*42,68 +42,68
2,32 42,32 {=11.77 J&z.gﬁ M 11,77 |-42,32 42,32
+1,02 +1,02 | +1.47 +1,47 | +0.1% + +1,63 +0,58
+8,8% +8,8% |+12.72 +12,72 |+13.86 +"‘13.‘¥" <15 m._%
+6.2k ﬂz.zs__ﬂg_.gé +1L,49 |+15.62 +15,62 |+10.86 +10,
20,36  -20.36 | -S. ﬁ%ﬁ&% ~5.66 |-20.36 -20.36
65 4,65 | 6,69 =5, -0, _=0.k2 | 7,48 2,67
+5.19 +5,19 | +7.47 +7.47 | 18.1% +8.1% | -0.85 +
+5,13 +;t+.g§ +10,40 +1.22 |+12,8% +12,84% | +8,92 +8,92
-10,04 =10, 2,79 - - «2,79 |-10,04 «10,04
"5087 -5087 "80’#" -S.M -0.8 é& — "3‘37
+1,91 +1,91 | *2,75 2,75 | ¥3.00 +3.,00 | ~0.31 nal.
+4,67 23,02 | +1,12 |+11.68 +11.68 | +8,12 +8,12
"k‘o]-B -bom -10 _-xﬂ__;‘!‘ﬁ .1.16 -bola -""018
-6020 -6020 -8092 -8092 .0085 _‘.'11.2..2_ e "3056
=0.16 =0,16 | =0.23 0,23 | =0.25 0,25 | +0,03 —=0,38
ete,
2= <100

10t
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balanced o large mumber of times to reach equilibriuwn, The
factor r for this case was found to equal one, indicatinz a
condition of neutral equilibrium; in other words, since no
nonent is required at A to rotate the member at Joint A, a
condition of instability exists, When r is found to be one,
the moment distribution solution converzes very slowly.
When the value of r is greater or smaller than one, the
noment distribution solution will converge nmore rapidly.

The deflection curve for the member with a moment
applied at joint A would be similar to the curve shown in
Figure 21(b).

A second solution using the series criterion is shown in
Table 1ll. An external moment of 10,752 inch kips was apnlied
at joint C. This magnitude of moment 18 necessary to rotate
joint C one radian and is used so that the similarity with
the stiffness criterion solution can be demonstrated, All of
the Joints except C were balanced and then a sumation was
made of the carry-over moments at C, This summation was
found to be =8,750 inch kips indicatirg that a moment of
10,752 = 8,750 or 2,002 inch kips is required to rotate joint
C one radian when the other joints have rotated and deflected
to a position of equilibrium, The factor r for this case was
found to equal 0.81l; indicating a condition of stability.

The member, however, is unstable as was shown in the first

solution,



Table 11,

Series Solution for a Moment Applied at C.

A C D
Ce 0,918 0,695 | 0,695 0.918 .
Cp 0.669 1,235 0.899 | 0,899 1.235 0,669
Ca | =0.0698 0.359 | 0,118 0,250 | 0,250 0.118 | 0,359 ~0,0698
D.F.| 1.0 0,579 | o421 0.5 0.5 0421 | 0,579 1.0
+4833 +4833 | +1344 +53726 +1344 | +4833 +4833
-1284 :g_gg_ _.g% =307 |=3202 ~ 3212 |-2232 -2232
=349 + =23 <2374 |-2179 2179 |-1514 ~152%
+1070 +1070 |+1539 +1539 | +147 F206 17k +615
727 727 | -10%6 <1046 | -1139 1139 | +119 ﬂ.%
+268 i +oi3 T | YO +671 | *hé6b +
=811 +43 | H409 S09 | =375 =375 | =261 =261
+187 +187 | +269 +269 +26 +218 | +301 +108
=133 <133 | 192 <192 | -209 209 | +22 =313
+49 136 | + +12 | ¥122 +122 | +85 +85
B S| s W9 2 | e e
+ + + +
-25 =25 36 =36 -39 -39 ¥ _g%-
+9 + 119 +2 +23 +23 +16 +
dﬁ' +1 | -1 <11 <10 ~10 -7 -7
+ +4 +6 +6 +1 +5 +8 +3
-5 =5 -7 -7 -8 -8 +1 .:lé
+3 +7 +8 +1 +6 +6 +4 +
+2 0 +1 +1 +1 +1 ] 0
-1 -1 -2 -2 0 2 | =2 -1
-1 -1 -2 -2 -2 | -2 0 =3

a0t
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The deflection curve for the beam=-column with a moment
applied at joint C would be similar to the curve shown in
Pizure 21(c). Due to the symmetry of the beam-column, joint
C would not deflect and 1s a node on the deflection curve,

The two solutions using the series criterion show the
need for oconsidering the shape of the deflection curve with
1ts effect on the stability of the member,

The member shown in Fijure 21(a) was also checked for
stability using the stiffness criterion., The rotational and
translational stiffnosses of joint C were determined; due
to the symmetry of the member, the joint C is a node or a
point of maximum deflection on the deflection curve respec-
tively for the two stiffnesses, Tho rotational stiffness of
Joint E was determined, which agreed with the results of the
first solution in applying the series criterion,

In using the equations derived for the stiffness
criterion, and starting at the left end of the member, the
results are as follows:

Member AB,

6,170
Spyy = 6li. 7
Spyy = 0.647
Member BC,
Sczz = 1.000
S = 32,2
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Scyy = 0,060

Since the entire member is symetrical about joint G,
the rotational stiffness of joint C is 1,000 + 1,000 = 2,000
inch kips., This moment agrees in magnitude with the wvalue
obtained in the second solution using the series criterion,
The value of the rotational stiffness indicates that the
menmber is stable if it is deflected with a node at joint C,

The translational stiffness of joint C is 0,060 + 0,060 =~
0,120 = 0 kips per inch. The stiffneas of the elastic
support at C is included in each of the 0,060 values and
therefore the 0,120 value must be subtracted to obtain the
true translational stiffness of the joint C considerin: the
entire structure on both sides of joint C, The value of the
translational stiffness indicates that the member 1s unstable
since no force is required to deflect joint C, The member,
therefore, would buckle as shown in Pigure 21(b).

Continuing the solution and working to the right from

Joint G, the results are as follows:

Membexr CD,
S‘Dzz = -3.7’4'0
Spys = 32.8
Member DE,

W
N
N

{

o
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The rotational stiffness of zero at joint E agrees with
the first solution made usin; the series criterion and also

indicates that the member is unstable,
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TORSIONAL STIFFNESS OF THE END POST MEMBER

The torsional stiffness of the end post member was
required to determine the elastic propertles, using equatlions
(132) and (137), of the horizontal projection of the member,
. The torsional stiffness, Si, 1s defined as the torque
per unit of twist required to twist a memdber. The procedure
used to evaluate the torsional stiffness has been presented
by Hrennikoff (17).

A oross section of the end post member is shown in
Mgure 22, Portions of the channel flanges and of the cover
plate outside of the gage lines of the rivets do not contri-
bute to the torsional stiffness and are not shown on the
fizure,

When a torque 1is applied to the end post member, shearing
stresses are developed as shown in Pigure 22. The shear
flow, q, 18 a constant for a thin-walled section, The shear
flow 18 defined as the force por unit of lenzth of periphery
of the oross section. Let T represent the shearing unit
stress, then,

Q= 0,24 Ty = 0,375 T, = 0.436 T, (140)

The force, P, in the lacing bar can be expressed as

PCos 30 = (0.375) T,(14.25)
P =617 T, (141)
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Figure 22, Cross section of end post member,
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The total torque developed by the cross section can be

expressed as
My = (0.24) T, (9.56) (11.L49) + (0.375) T,(1h1.25)(10.11)
- (2)(0.1436) T5(1.38)(9.56)  (142)

Equatinz the external and internal work per unit of

length of the member results in

M . T2(0.24)(9.56)(2) , T3(0.375)(1h.25)

267, 20 2G
+ T500.436)(1.38)(4) ,  P2(2,0) (143)
20 28(2,25)(0.438)

By substituting the relationships from equations (140),
(141) and (1h2) in equation (143), the equivalent polar
moment of inertia, J,, can be found, Using the relationship

G = O.L4E,
J, = 153.1 1ok

The torsional stiffness, S,, for the end post member 1s,

therefore,

aJ
8, = o
t T

Assuning G = 11,600 kips per sq. in,,
S = 7,595 inch kips per radian of twist,
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