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IliTRODOCTION 

Object 

The object of this investigation was to make an analy­

tical study of the elastic stability of the top chord of a 

three-span continuous pony truss bridfje. The partlcxxlar 

bridge studied was dosigned by the Iowa Highway Commission 

in I9I1.7 and erected over the Worth River on State Highway 60 

a few miles southeast of Des Koines, Iowa, 

The present Standard Highway Specifications of the 

American Association of State Hl̂ ĥway Officials (1) require 

that a check be made for stability of the top chord of a 

half-throu>jh or pony truss bridge. These Specifications sug­

gest Timoshenko (2) as a reference for a procedure of 

analysis for stability; in this reference, Timoshenko, 

however, does not cover the case of a continuous atructure 

in which the top chord will have members in tension as well 

as in compression. 

In a previous edition of the Standard Highway Specifi­

cations (3, p. 173) it was stated that* 

The vertical truss members and the floorbeam 
connections of half-throû  truss spans shall be 
proportioned to resist a lateral force, applied 
at the top chord panel points of the truss, deter­
mined by the following equation: 
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R = 1̂ 0(A + P) in which: 
R = lateral force in pounds. 
A s area of cross section of the chord in 

square inches, 
P = panel length in feet. 

This is an esipirical procedure and no additional check for 

stability was specified as being required. This sane pro­

cedure was employed by the Iowa Highway Commission for the 

desisn of the pony truss used as an exeniple to which the 

results of this thesis were applied. 

The problem studied was one of a lonj top chord which 

is essentially a beom-column elasticolly supported at intor-

mediate points by a frame composed of the verticals of the 

truss and the floor beams framing into the verticals. The 

type of solution was limited to one in which it was assumed 

that the truss members were in a plane before and after the 

loads were applied to the stxnicture. The effect of the 

dla:̂ onal web members of the truss on the stability of the 

top chord was neglected. Should the influence of the 

diagonal web members be desiredf it co\ild be introduced by 

the method developed in this thesis after careful considera­

tion is taken of the effect of the gusset plates. The 

problem then was limited to the stability analysis of a 

member composed of the top chord and end posts of a three-

span continuous pony truss bridge; the top chord is elasti­

colly supported at the panel points against deflections in a 

direction at right angles to the plane of the truss, and it 
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Is assTsned that the meanbers Torm a straight line when 

viewed from above. 

Briefly, the procedures of analysis used in this 

investigation to check stability are: (1) When an external 

clockwise moement, under a condition of equilibrium, is 

required at a joint to rotate the Joint in a clockwise 

direction, there is an indication of stability; but, when 

the external moment necessary to hold the Joint in equili­

brium Is opposite to the direction of the rotation, then 

there is an indication of instability. And, (2) \Aien a 

force, under a condition of equilibrium, acting out of the 

plane of the truss is applied at a Joint and when the 

ciirection of the deflection of the Joint la in the direction 

of the applied force, there is an Indication of stability| 

but, when, under a condition of equilibriton the direction of 

the force must be opposite to the direction of the deflection 

of the Joint, then a condition of instability is indicated. 

In order to solve a problem involving otabillty it is 

necessary to deal with a failure load; this loads to the use 

of the term "load factor" instead of "factor of safety". 

The term "load factor" has been used in the neronautlcfil 

field and is ccaning into use in the civil engineering struc­

ture! field. The "load factor" as it applies to a buckling 

problem can be defined as the factor which when multiplied 

by the actual or deaisjn live load is expected to produce a 
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load causing a buckling failure in the structure. 

Bie actual procedure of detorminin̂  the load factor 

for a particiilar structure is one of selecting trial values 

of the load factor; that is, a load factor is assumed and 

the structure checked for stability. This process is then 

repeated until the load factor which causes failure by 

buckling is found. The work in this thesis was limited to 

axial xxnit stresses that were within the yield strength of 

the material. 

Historical Background 

The procedures used in the analysis in this thesis 

were baaed on the series and stiffness criteria which are 

extensions of the conventional moment distribution type of 

solution as applied to continuous frames. The literature 

used as a background for the work Is briefly reviewed. 

The series criterion is on extension of the moment 

distribution procedure of Hardy Cross (!}.)• In 1935» James 

{$) extended the Cross method of moment distribution to the 

analysis of continuous members subject to axial loads. 

Tables of stiffness and carry-over factors for structural 

members under axial load have been published by Lundquist 

and Kroll (6) (7). In 1937, Lundquist (8) applied the prin­

ciples of moment distribution to stability problems and 
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develcxped the sorios and atlffneas criteria# In Hoff 

(9) save the first rigorous proof of these criteria 

developed by Limdquist, The procedures for stability 

analysis described above were limited to cases of continuous 

members over rigid supports or trusses in which the buckling 

was considered in the plane of the truss; in other words, 

the Joints of the trusses were considered to rotate but were 

assigned as fixed in position. In 19t|-̂ * Hu and Llbove (10j 

applied the principles of moment distribution to the stress 

analysis of an elastically supported beam-column. Winter, 

in 19i|.3, (11) published a biallotin on buckling of trusses 

and rigid frames. In the analysis of the rigid frames he 

considered the effect of Joint displacemont* or sidesway, on 

the buckling stability of the frme. Also In 19l|-9« Kavanagh 

(12) published a stirvey of tho theory of framework stability 

that was made available to members of tho Column Research 

Coxuicil. In 19l|-9« Wessman and Kavanagh (13, p. 968) made a 

statement as follows 1 

It will be of some interest however to know that 
additional investigation has doaonstrated clearly 
that the buckling loads for steel buildings and 
bridge trusses, with members having slendemess 
ratios in accord with current design practice, are 
so close to the loads corresponding to the yield 
stress of the steel employed, that thore is abso­
lutely no need for buckling load analysis. The 
yield strength is the ceiling regardless of 
whether ordinary structural steel, low alloy steel, 
or silicon steel is used. This conclusion is not 
true, however, for structural aluminum alloys. 
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Whereas buckling of truss members in the plane of the truss 

was considered by V/essraan and Kavanagh, in this thesis, 

buckling of the entire top chord out of the plane of the 

truss was considered. Budiansky, Seide, and Weinberger (ll̂ .) 

developed a set of curves for the buckling of a column on 

equally spaced defloctional and rotational springs. Their 

results consider only the special case of equal spans, 

constant compressive force, equal deflectlonal springs, 

Intoraediate rotational springs of equal stiffness and end 

rotational springs of half the stiffness of the intermediate 

springs* Work on the buckling of the top chord of a single-

span pony truss bridge has been carried on by Holt (1̂ ) (16), 
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NOTATION 

Only those ŝ mbola which are used repeatedly throughout 

the thesis are Included below with the number of the pa.̂ e on 

which the symbol is first used. 

Ag Substitution for Sg + 

Bo Substitution for . a (58) 

C Carry-over factor (13) 

Carry-over factor (32) 

Cĵ ĵ U Carry-over factor (36) 

®b2R Carry-over factor (Ip.) 

Cc2R Carry-over factor (1|6) 

D2 Substitution for Tg + 

D,F« Distribution factor (l{.6) 

E Modulus of olasticlty (13) 

I Moment of inertia (13) 

k Substitution for (13) 

L Length of a member (13) 

Length of a member (32) 

Moment at the end of a member with no adjacent 

member (13) 

M._ Moment at end A of member AB (32) 
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Torsional moment about the t-axls (77) 

P Axled stress (13) 

Axial stress (33) 

r Stability factor (11) 

Rjjj Rotation of a member (32) 

S Stiffness factor (13) 

Stiffness factor (32) 

S]̂ {j Stiffness factor (35) 

S'" Substitution for S(1 + C) (19) 

Substitution for Ŝ d + Ĉ ) (33) 

Sggg Rotational stiffness (5l) 

Sgyy Translatlonal stiffness (51) 

3̂ 72 Quantity used In tho stiffness criterion (51) 

sl • Quantity used In the stiffness criterion (5l) 
i?y» 
Ŝ  Torsional stiffness (77) 

tg Stiffness of an elastic support (32) 

tjjî  Translatlonal stiffness (31) 

T Translatlonal stiffness (16) 

T-ĵ  Translatlonal stiffness (33) 

ÎR Translatlonal stiffness (3lf) 

Shear at the end of a raoraber with no adjacent 

member (13) 

Vab Shear at end A of member AB (31) 

X, y Rectangular co-ordinates (13) 

Deflection of a Joint (2l|.) 
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Rotation of a joint (31) 

 ̂ Rotation of a Joint (26) 

 ̂ Deflection of a joint (l8) 

c|>̂  Substitution for (hi' Cos kL - 1) (l5) 

(b_ Substitution for 1 , (1 - kL Cot kL) (15) 

Substitution for - • }• .. kL - 1) (21) 

cb' substitution for - 1 , (1 - kL Coth kL) (21) 
n̂ /i.T \Z 

(kL)2 

(kL)' 
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STABILITY ANALYSIS OP THE ELASTICALLY STJPPORTED 

BEAM-COLUMN 

In this thesis the analysis va.s, of coursê  based on the 

works which have been cited, For purposes of verification 

and clarification, all equations used were derived anew even 

thoUjh various derivations for some of them can be found in 

the aforementioned literature. In many oases the derivations 

are of a more general nature and in some the derivations are 

entirely new. This complete set of derivations is essential 

for the clear and conclusive presentation of the final 

solution. The equations for the stiffness criterion were 

derived with a sif̂ n convention which Is believed dearer than 

previously used sijns. In addition, the stability criteria 

were applied to an existing three-span continuous pony truss 

bridge ̂ ere before the application had been limited to 

sln̂ le-apan structxtres. 

Series Criterion 

The aeries criterion is one of the criteria used to 

check the stability in a structure. The series criterion 

states that when a conversing series is obtained a condition 

of stability is indicated, but when a diverging series is 
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obtained then a condition of instability is indicated. The 

series in this case is obtained from a moment distribution 

solution. The general procedure as applied to a boam-colunin 

elastically supported at the joints (representing the top 

chord of the pony txuss) is as follows: 

Apply an external moment at any joint, N, of the beaia-

colimn. 

Balance joint N which is permitted to rotate and 

deflect while other joints are held against rotation but nay 

deflect subject to the elastic restraint at each joint. 

Tlien, Joint N is fixed â âinst rotation but is free to 

deflect subject to the elastic restraints contributed by all 

monbers and s\jpporte« 

The foregoing operations will cause momenta to be 

carried over to the ends of every member of the beam-column. 

Now the other joints, except N, are balanced one at a 

time and moments carried over to the other members as already 

described. 

This process is repeated until all of the joints are 

balanced except, of course, joint N. The unbalance at joint 

N is doterminod by adding all of tho momonts carried to 

joint N while balancing the other joints in the structure. 

Bie unbalanced moment at N divided by the originally 

applied external moment -̂ ives a stability factor, r. 
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Now If joint If were balanced a second time and the 

entire process repeated, the new total moment carried over 

to N divided by the ori ginally applied external moment 

would equal If this process wore repeated a series of 

the type 

l + r+r2+p3 + i4 + . 

would be obtained* For this series to converge, r must be 

less than one. When r equals one, a condition of neutral 

equilibrium exists. The physical significance of neutral 

equilibrium can be explained as the condition when no 

external moment is required to rotate a Joint of the stioio-

ture. When r is less than one, a clockwise external moment 

is required to rotate tho Joint in a clockwise direction 

which has been defined aa an indication of stability and 

when r is greater than ono, a counterclockwise external 

moment, under a condition of equilibrium, is required for & 

clockwise rotation of tho Joint and this has been defined aa 

on indication of instability. 

Derivation of PormiCLas for tho Series Criterion 

For a moment distribution solution the elastic constants 

of the members are required. Two of these elastic constants 

are the stiffness and carry-over factors. \Vhen axial loads 

are neglected, these factors are a function of the physical 
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properties or the raember, \flicn the effect of an axial load 

in the member ia considered in the moment distribution 

method of analysis, the stiffness and carry-over factors are 

dependent on the magnitude and type, tension or compression, 

of axial force, as well as the physical properties of the 

members* 

If a member is hinged against deflection at the near end 

and fixed against rotation and deflection at the far end, the 

ratio of the moment at the far end to the applied moment at 

the near end ia knovm as the carry-over factor and will be 

denoted by C. Also, the moment necessary to produce a 

rotation of one radian of the near end ia known as the stiff­

ness factor and will be denoted by S. In the references 

token from the aeronautical field the stiffness factor is 

defined as the moment that will produce a rotation of one-

quarter radian. However, the definition of one radian 

rotation as usually used in the structural field will be 

used in this thesis. 

The differential equation for the deflection of the 

member in Figure 1 is 

S = - «A + V '•y 

in which = A B , Since P, E, and I are constants, 

P 
let , The solution of eqiiation (1) ia 
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Figure 1, Corapreaalon member with Its left end rotated. 

I 
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y - (̂  Cos kx + Cg sin kx -  ̂ x (2) 

The constants and Cg In equation (2) are determined 

from the boundary conditions, x = 0, y = 0, and x = L, 

y = 0 resulting In 

C, = and Co = - 1 F M, Cos kL + 
^ P 2 P Sin kL L A 

Therefore, 

y = "A COS kx - + Mfi Sin kx 
IT P Sin kL 

- 5A + •*• "b X (3) 
P PL 

Taking the derivative of equation (3) with respect to x. 

Introducing the boundary condition x ̂  l, ̂  = 0, and then 

making the substitutions 

•f = _JL (w. Oao kL - 1) 
(WJF 

4 >  =  — ( 1  -  k L  C o t  k L )  
(kL)2 

the carry-over factor is foimd to be 

0 = % = ̂  to) 

fn 
«A 

•Hie stiffness factor, which has been defined as with 

the condition x = 0, 11 = 1.1. found to be 

EI 't'n 
® = «A = f AS . d>2 '5) 

n̂ f̂ 
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Values of C have been publidied (6) (7) for values of 

kL« Values of  ̂ for values of Idi have been tabulated in 
EI 
L 

the some souroe in which the stiffness has been defined as 

the moment that causes a rotation of one-quarter radian. 

Therefore, the tabulated values can be used for the above 

case if they are equated to « Approximate values of 0 

and S can be obtained from the curves included in Appendix A« 

When the axial force is isoro, kL equals zero and is 

I equal to one* Therefore, for this special case 3 s 

which, of course, is recognized as the usual stiffness 

factor when axial forces are not present or are neglected. 

The translational stiffness of a member is another elastic 

constant required for the moment distribution solution for a 

beam-column type of member* The translational stiffness is 

defined as the shear necessary to deflect one end of the 

member a unit distance with respect to the other end when 

neither end is permitted to rotate* The translational 

stiffness of the member will be denoted by T, 

The differential equation for the deflection of the 

member in Figure 2 is 

Elg (6) 
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Figure 2, Corapresalon member with Its right end deflected 
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in which and from syoanetry = Mg, 
L 

Letting M = = Hg and substituting Tor » tho solu­

tion of equation (6) is 

y = Cos kx + Sin kx + ̂   ̂x + (7) 

The constants and Cg in equation (7) are detemined 

from the boundary conditions, x = 0, y = 0# and x « L, 

y s= 6 resulting in 

Oi « - § and C5 = I 1 4 Cos kL 
 ̂ P 2 p Sin kL 

Therefore, 

7 = - f  0 , a k , * a l g ^ 5 S ^ S l „ k x * f - a x * 4 s  ( 8 )  

Taking the derivative of equation (8) with respect to x, 

and introducing the boundary condition, x « 0, ̂  = 0 

results in 

Writin.̂  equation (9) in terms of C and 3 from equations 

<1|.} and {$) results in 

M = (10) 
Is 

The value of the shear or Vg is equal to the trans-

lational stiffness of the member when S = 1 

T = V = V 8 ̂  ** ̂  
 ̂"A L 

rr 2S(1 + C) ̂  P 
L2 L 
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Substituting S * for S(1 + C) results in 

T = . I (11) 
L2  ̂

All of the previous derivations were made for members in 

which the axial force was compression, VHien the axial force 

is tension some changes are brou5̂ t about in the equations. 

The elastic constants S, C, and T will» thereforê  be derived 

for a raenbor with a tension axial force. 

The differential equotion for the deflection of the 

member in Plijure 3 is 

EI ̂  -f V̂ x + Py (12) 

in which VA = **• " B , Substituting for JL. « the 
A g EI 

solution of equation (12) is 

y = Cn Coah kx + C« Sixih kx + 2̂  - x (13) 
" 1  2  p  pi ; ;  

The constunts 0̂  ̂and O2 in equation (13) are determined 

from the boundary conditions, x = 0, y = 0, and x = L, 

y = 0 rea\iltin(5 in 

Oi = - ̂  and O2 = j. ainh kl, ̂ "a + "b' 

Therefore, 

y = - ̂  Cosh kx + ̂ A kL -f Mq sinh kx 
p P Sixih kL 

+ ̂  MB , (lit) 
P PL 
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Figure 3» Tension member with its left end rotated. 
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Taking the derivative of equation (1J[|.) with respect to 

Xt introducing the boundary condition x Lf s Of and then 

making the substitutions 

4)1 = - 1 <kL Csch kL - 1) 

<l>n = - 1 (1 - kL Coth kL) 

the carry-over factor is found to be 

0 = 1%= '•'•f (IS) 

"A TZ 

The stiffness factor Is found with the boundary condi­

tion X « 0, ̂  = 1 
dx 

S » M. a |5 (16) 
 ̂ . ( ̂f)2 

As for members with axial ooropre8sion« values of C and 

for members with axial tension have been tabulated 

(6) (7) I'or various values of kL* Approximate values of C 

and S oan be obtained from the curves included in Appendix A« 

The expression for the translational stiffness of the 

member also depends on the type of axial force* 

The differential equation for the deflection of the 

member in Figure is 

EI ̂  - V̂ x + Py (17) 
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Piĉ uro 1;, Tension member wlfch Its right end deflected. 
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in which and from synroetry = Mg. 
Ii 

Lotting M = =t Mg and substituting for the solution 

of equation (17) is 

7 s Cosh kx C2 Slxih kx - ̂   ̂ ^ x  (i6) 

The constants and G2 In equation (18) are determined 

from the boundary conditionŝ  x « 0, y » 0, and x = L, 

y « i resulting in 

Oj. = H and Oj = - I "* 

Thereforê  

y = ̂  Cosh kx - ̂  ̂  
P P Sihh kL 

- § + ̂  x (19) 
P PL 

Taking the derivative of equation (19) with respect to 

x and introducing the boundary condition x r: 0, ̂  - 0 

results in 

H s & (20) 
lst̂ ttt̂ t 

Writing equation (20) in temui of C and S from equations 

(1$) and (16) results in 

H B  ̂ (21) 

Equation (21) for a laexaber with axial tension has 

exactly the seme form as equation (10) for a member with 

axial ccsnpresslon. Even thotigh the form of these equations 

is the samê  there is a difference in the individual values 
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for C and S depending upon whether the axial load is tension 

or compression. 

The value of the shear or Vg is the translational 

stiffness for the member vhen = 1 

m - t r  _ t r  - 2 M + P  T - Va - 'B -

2S(1 -f C) , P 
L2 L 

Substituting S*'* for S(l + C) 

T = 2̂ 111 + P (22) 
l2 r 

In lator derivations it was desirable to have a general 

equation for the moments at the ends of a member for the 

<;eneral conditions of displacement and rotation of both ends 

of the member as is indicated in Figure 

The differential equation for the deflection of the 

member in Piijure ̂  is 

 ̂- "a + 'A* - 'P'y - JA* '23) 

in which a " yÂ  . Substituting for 
L 

 ̂f the solution of equation (23) is 

y s Cn Cos kx + Op Sin kx - JJfli + ̂ A " ̂Â  x 
 ̂ P PL 

+ yA (21̂ .) 

The constants Cg in equation (2k) are determined 

from the boimdary conditionŝ  x = 0, y = ŷ f̂ and x = L, 

y s yg resulting in 
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Figure 5, Compression member with both ends rotated and 
deflected. 
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Ci = and CU = - % ̂oa kL -f Hp 
P P Sin kL 

Therefore, 

7 s 2a COS toe 
P 

COB kL + M 
P Sin kL 

B Sin toe - % + 
P 

Ma * Mb - TA) , . (2S) 

Taking the derivative of equation (2$)  with respect to x 

and introducing the boimdary conditions, x » 0, ̂  

and X B L, two equations are obtained that can be 

solved simultaneously for and MQ} 

Writing equations (26) and (27) in terms of C and S 

from equations (l|.) and (5) restilts in 

Equations (28) and (29) are derived for a compression 

axial load; the foxro of the equations for a tension axial 

load is exactly the same. Even thoû  the form of these 

equations remains the same, there is a difference in the 

individual values for S and C dependin̂  ̂upon whether the 

(28) 
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Bxlal load is tension or compression. 

For the bean-ooliaan̂  Figure 6(a)» the procedure and 

factors that are requiî d for a nomont distribution solution 

for the moments due to an externally applied moment at one 

of the Joints are as follows: 

î ply an external mcnaent at joint C« The structure will 

deflect̂  in general* as shown in Figure 6(b). The Joint C 

is permitted to rotate but all of the other Joints are held 

against rotation with a temporary oxtornally applied moment. 

The external moment applied at G must be distributed 

between the ends of the two members that meet at Joint 0. 

Stiffness factors will be derived which will be used to 

determine the distribution factors at C« 

A first type of carry-over factor for the member CD 

must be detennined so that the m<»aent can be computed 

as this carry-over factor multiplied by the balancing 

momentf at Joint C« 

A second type of carry-over factor must be determined 

so that the moments and can be found as this 

carry-over factor multiplied by the moment HQJ) at Joint C* 

A third tTpe of carry-over factor must be determined so 

that the moments Mgp and can be found as this carry-over 

factor multiplied by the moment 

Ihe third type of carry-over factor Is used to determine 

the moments induced in any additional members to the rî t. 
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The same prooediire as described above is used to determine 

the induced moments at the ends of the members to the left 

of Joint C, This completes one cycle of balancing one 

joint and determining the induced moments in the other 

members* The other Joints will be balanced in a similar 

manxierf one at a time, and moments carried over until all the 

Joints are balanced* 

The elastic constants of the moaberSf stiffness and 

carry-over factors* are the same for each end of the manber 

vhen there is no relative displacement of the ends of the 

member* This is true for a member of constant cross 

section throughout its length when axial forces are con­

sidered as well as whon axial forces are non-existent or 

neglected* However« when the ends of the members are 

elastically restrained* relative displacement of the ends 

will occ\ir* and the values for the stiffness and carry-over 

factors must be determined for each end of the member* IHie 

magnitude of these factors will depend* therefore* on the 

magnitude of the stiffness of the elastic supports* as well 

as all of the other factors that were included in the pre­

vious derivations made for the expressions for stiffness and 

carry-over factors when no relative displacement of the ends 

of the member occurred* 

Figure 7(&) shows a segment of any two consecutive 
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u '  I 
'A 

( a )  

Ma "£> 

L L.-7 

V-

Met 

Figure 7» Two members of a continuoua, elastlcally supported 
beam-column with Joint B rotated, and with Joints 
A, B, and C deflected. 
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members of the beam-ooluran shown in Figure 6(a}« In order 

to simplify the notation for generalized equations which are 

to be derived̂  the members of any segment of any two oonse-

outiye members will be referred to as members 1 and 2̂  and 

the joints as A, and C. This notation will be followed 

in all subsequent derivations. 

p̂ly an external moment Mg at Joint B producing a 

rotation of <=< radians. All of the joints are free to 

deflect subject to their elastic supportŝ  joint B is per­

mitted to rotate under the applied momentf and all of the 

other Joints are fixed against rotation. 

The effect of the elastic support at A and the entire 

structure to the left is represented by *AB which is the 

shear in the member AB at a point Just to the rî t of the 

elastic 8\:̂ port at A, The shear will be expressed as 

ÎL̂ A which ŷ  is the deflection of Joint A and t̂ ĵ  is 

defined as the force per unit of deflection for the left end 

of member 1 and the entire structiire to the left when no 

joint is permitted to rotate. Likewise the shear just 

to the left of the elastic support at represents the 

effect of the elastic support at G and the entire structure 

to the riŝ t. The shear Vq̂  will be expressed as ̂ ŷ̂  

which yQ is the deflection of joint 0 and t̂  is defined as 

the force per unit of deflection for the right end of member 

2 and the entire structure to the right when no Joint is 
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permitted to rotate* The external force Fq at joint B can 

be expressed as t̂ g in which yg is the deflection of Joint B 

and tg is defined as the force per unit of displacement for 

the elastic support at B, 

Referring to Figures 7(b) and (o) and to equations (26) 

and (29) the following equations for the moments at both ends 

of the two members can be written! 

"ab=SI[CI°< -Rir<I+V] '30' 

"ba = ®l['̂  " v] 

"BO = Szt* - ®2L<1 + Oz'] <32) 

"0B= ®2C°2°' -"a.'!* °2'] <33) 

in which is defined as $ and «« 

yo - yfi . 
"TT" 

The relative magnitude of the moments and MQQ will 

give the necessary information to distribute the moment 

applied at Joint B to the two members coming into Joint B, 

From an inspection of the above equations it appears that 

these moments may not vary linearly with the angle of rotation 

of Joint B, Therefore« the derivation will be made for an 

angle of radians Instead of an angle of one radian as is 

usually Used in the derivation of stiffness factors. 

To obtain the values for the mcsnents, an expression of 
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and RgL will be required. 

Referring to Plgŵ e 7(b) and auimnlns laOTients about B: 

«AB + «BA + - 'A' + = ° <3"̂ ' 

Referring to Figure 7(c) and sunanlng moments about Bi 

B̂C •*" ĈB **• " ̂B̂  " ̂2R^C^2 ~ ® 

Referring to Figure 7(a) and summing forces In the y 

direction: 

"iL̂ A *E?B + •'kyc = ° 

Substituting equations (30) and (31) Into equation (3U) 

and making a substitution using equation (11) results In 

S'"« . T̂ Lf = 0 (37) 

Substituting equations (32) and (33) In equation (35) 

and making a substitution using equation (11) resiats In 

3'" « - T,I.f 0̂ ' - t' y L =0 (38) 
2 2 2 2H 0 2 

Equations (37) and (38) are derived for a compression 

axial load; the form of the equations for a tension axial 

load Is exactly the same* Even though the form of these 

equations remains the samê  there Is a difference In the 

Individual values for s"* aad T depending upon whether the 

axial load Is tension or campresslon. 

The throe equations (36)# (37)f and (38) are solved 

simultaneously for ŷ , yg, and ŷ . These qiaantltles are used 

to solve for the tenns R̂ ĵ  and required In equations (30), 
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(31), (32), ana (33). 

®1R ~ = 
la 

2L t* 

R2i, = Ze_l2B = 

+ V<*iR *'IH' 

«2" - si" fs ̂  

(39) 

(t^o) 

in which T̂  Is defined as the force per unit of deflection 

for the risht end of raember 1 and the entire structure to 

the left when no Joint is penaitted to rotate, but is free 

to deflect subject to the elastic supports* Likewise Is 

defined as the force per unit of deflection for the left end 

of member 2 and the entire structure to the right* 

Also, the equations relating the effect of elastic sup* 

ports in series and in parallel have been used to reduce 

equotions (39) and (i|.0) to the form ̂ ven above* Ebcamples of 

these equations are 

t̂  ® for elastic supports in series, and 

Tj' B 
IR 

t* T 
4k 
4L ̂ ̂ 1 

for elastic supports in parallel* 

It is noted from equations (39) and (1;0) that the values 

of and R2J;, vary linearly with . If these values are 

substituted in equations (30), (31)# (32), and (33), it is 

obvious that the moments at the ends of the member in Figure 
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7 also vary linearly with ©<• Hierefore, the usual definition 

based on one radian of rotation can be vised for the stiffness 

factor* 

When, however̂  the ends of the raonbers are elastioally 

restrained, relative displacement of the ends will occur* and 

the value for the stiffness factor must be determined for 

each end of the member. 'She symbol will be used to denote 

this stiffness factor for the riijht end of member 1; it will 

be defined as the moment applied at the right end of member 1 

with the magnitude necegseucy to produce a rotation of on© 

radian at the right end when the ends of the mGrober are 

elastically restrained against deflection and the left end 

of the member is not permitted to rotate. Also, from the 

definition of the quantities that have been used in the 

derivation* all of the Joints to the loft of the mesaber are 

free to deflect subject to the elastic supports but none of 

these Joints la permitted to rotate. The values of and 

SgL are, therefore, and >dien equals one radian 

With the above information the first type of carry-over 

factor can be found. This carry-over factor is used to find 

the moment induced at the far end of the members that meet 

at the Joint that is bein̂ ; balanced. As an example, the 

ik2) 

ikl) 
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STmbol la used to denote this carry-over factor. The 

aubacrlpts alR indicate that the carry-over factor Is for 

the rlsht end of member that the rl̂ t end of member 1 has 

been balanced, and that the balancing moment at the right end 

of member 1 multiplied by the carry-over factor gives 

the induced moment at the left end of member !• For any 

value of the carry-over factors will be independent of 

and are determined for the members in Figure 7(a) by using 

equations (30), (31), (32), and (33) 

A special formula for will have to be derived for 

the situation when A is the left end of the entire beam-

column as shown in Figure 6(a)« An external moment is 

applied at Joint B, which is permitted to rotate and deflect* 

Joint A is not pexmitted to rotate or deflect* All of the 

Joints to the right of B are permitted to deflect but are 

held rigidly against rotation. 

Referring to Figures 8(b) and (c) and to equations (28) 

and (29)ff the following equations for the moments at both 

ends of the two members can be wrltteni 

(1̂ 3) 

and 

1 - R2i,(1 + Cg) 
OOi.) 
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Flgure 8, Two members of a continuous, elastlcally supported 
beara-column with Joint B rotated, and with Joints 
B and C deflected. 
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«AB = Si - «1h'1 + ®l'] 

"BA = Si [« - Biad • <>1)J 
"BO = Sg [°< - Ra<i * "z'l 

ĉB ~ [̂ 2°̂  " •*• "a'] 

Rererrlng to Flgiire 8(b) and sunsoing moments about Bx 

*AB B̂A  ̂̂ABS. ~ ° 
ReTerrlng to Figure 8(c) and summing moments about Bi 

B̂C **" *CB ** ̂ B̂  " ̂crf*2 ~ ® 

Bj definition VQB = t̂ ŷ  (̂ ) 

Referring to Pigtire 8(a) and summing forces in the y 

direction! 

*AB + *̂ B + = 0 <S2) 

Substituting equations (Î )̂* (l|.6)f and (̂ 2) in equation 

(1;9) and making a substitution using equation (11) results in 

 ̂y - " ̂T»y« • = o (53) 
la I B B'B 2R C 

Substituting equations (1̂ .7)# (U8)f and (̂ ) in equation 

(̂ 0) and making a substitution using equation (11) results in 

2̂ " ̂2̂ 0̂ " ̂B̂  ~ ® 

Equations (53) and {̂ ) are solved simiiltaneously for 

yg and ŷ  Then, 
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Rir = ZB = 
la 

a,'" - si" la iL 
oc 

(Tj^ + »1R> -

(55) 

A second special formula for will be derived for 

the situation when A is the left end of the entire beam-

column as shown in Figure 9(a). An external moment is 

applied at Joint A which is permitted to rotate but not 

deflect. All of the Joints to the right of A ore permitted 

to deflect but are held rigidly against rotation. 

Referring to Figure 9(b) end to equations (28) and (29) 

the following equations for the moments at both ends of the 

member can be writtens 

 ̂ ~ ®1L̂  ̂ ®lO (56) 

3l Ol'] <57) 

Referring to Figure 9(b) and summing moments about At 

"AB "BA * ̂l̂ B ' ̂BÂ  ° ® 

By definition̂  

^BA " ̂1H7B (59) 

Substituting eqiiatlons (56)» (57)# and (59) In equation 

(58) and making a substitution using equation (11} results in 

gill 
1  ̂ I 

 ̂ l''B IR'B 

Therefore, 

R-
St 11 

IL " S = p—. c< 

(60) 

(61) 
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Figure 9, Two meinbera of a continuous, elastlcally supported 
beam-column with Joint A rotated, and with Joints 
B and C deflected, 

) 
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The second type of carry-over factor will be derived for 

the conditions shown In Figure 10» Wien the Joint at C Is 

balanced̂  moments are Introduced at the ends of member 1 as 

Is Indicated In Figures 10(a) and (b). All of the joints of 

the beam-column except C aro prevented from rotating but the 

joints are free to deflect subject to the elastic restraints 

of the supports* Ihe carry-over factor will be denoted as 

C|J2R* subscripts b2R Indicate that the carry-over 

factor Is for the right end of member 2, that the right end 

of member 2 has been balanced» and that the carry-over 

factor multiplied by the balancing moment at the right 

end of member 2 gives the Induced moments at both ends of 

the first member to the loft of member 2« 

Referring to figures 10(b) and (c) and to equations (28) 

and (29) the following equations for the moments at both 

ends of the two members can be wrlttens 

= "ba = 3lrl(l + (62) 

"bo - sg [02<x (63) 

mcb " s2 [« - r2r<i + oa'l (61t) 

In which % Is defined as . 
—15— 

Referring to Figure 10(b) and suimnlng moments about Bi 
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Figure 10, Two members of a continuous, elastlcally supported 
beara-coltunn with Joint C rotated and with Joints 
A, B, and C dieflected. 
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KaB "BA - ̂ <̂ 8 - - Wl = ° 

By definition̂  

ÂB ÎL̂ A 

Referring to Figure 10(c) and summing moments about Ct 

Mrc ĈB " ̂B̂  •*• B̂Ĉ 2 " ® 

definition, 

'bC " ̂'zL^B 

An equation summing forces In the y direction can be 

written but It will not produce an equation Independent of 

equation (65)* 

Substituting equations (62) and (66) In equotlon (6̂ ) 

and making; a substitution using eqiiatlon (11) results In 

Ti(yB - 7A^ - ̂ il̂ A - ® ^̂ 9) 

Substituting equations (63), (61}.), and (68) In equation 

(67) and making a substitution using equation (11) results In 

-TĈ  i2<yo - ys) + = 0 <70) 

The equations (69) and (70) are solved simultaneously 

for ŷ  and yg In terms of RgR* 

R2r = I2_̂  

Then, 
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f «•11 - \ 
(71) 

2 

0ari*7*0Ter factor denoted by (̂ oR expressed as 

C..̂ „ = ""aB s -*B* = •*• ®l' (72) 
"Hi5 -Tsi 32 fo? . R Ji + 0̂ )] 

The negative sign is introduced on and because all 

of the moments are expressed as positive when they are 

clockwise on a free-body of the memberi M̂ G and KJQ̂  are both 

shown as counterclockwise moments in Figure 10(b)̂  therefore 

the negative signs* 

Ihe numerator and denominator of equation (72) vary 

linearly with c< and̂  therefore, the carry-over factor C|22R 

is independent of • The denominator has been defined as 

the stiffness factor S21J for an equal to one radian. 

Therefore, the equation (72) can be simplified for the case 

of o< equal to one radian as 

<'b2h = !ill i2 2r_/!ll 

®2R  ̂h'k 

- V2H <73) 

A third type of carry-over factor will be derived using 

Figure 11, The moments at the ends of member 2 have been 

determined with the previous carry-over factor* Member 2 in 

Figure 11 corresponds to member 1 in Figure 10, The Joints 

A, B, and C are hold against rotation but are free to deflect 

subject to the elastic restraints of the supports. The 
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Pipnre 11# Two members of a continuous, elaatlcally supposed 
beara-coluran with Joints A, B, and C deflected by 
the rotation of a Joint to the right of C. 
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deflections are caused from a moment applied at a Joint to 

the risht of Joint C* Ihe can̂ -over factor will be denoted 

as Cq2R* subscripts o2R indicate that the carry-over 

factor is for the right end of member 2, that a Joint to the 

right of the riĝ t end of member 2 has been balanced̂  and 

that the carry-over factor Cq2R induced 

moment at the right end of m̂ ber 2 gives the induced moments 

at both ends of the first member to the left of member 2« 

Referring to Figures 11 (b) and (c) and to equations 

(26) and (29) the following equations for the momenta at 

both ends of the two members can be writtent 

"ab ° "ba ° '•"t) 

"bo = "ob " s2h2(1 + og) (75) 

Referring to Figure ll(o) and summing moments about Ct 

2Mbc - P2<yo - ye) - VbaI'2 « 0 <76) 

By definition* 

® <77) 

From equation (?$)» 

7c (78) 
n l  I  f  
2̂ 

Substituting equations (77) and (78) in aquation (76) 

and making a substitution using equation (11) results in 

73 " "BĈ 2̂ 2 (79) 
1.1 qlft 
2̂L®2 
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Referring to Figure 11(b) and aumniing momonts about Bt 

2«ab - fatys - rj,) - Vâ  = o (So) 

Bj definition* 

VAB = <!ll7A 

Substituting equations (7i|-) and (8l) in equation (8o) 

and naking a substitution using equation (11) results in 

Ta =  ̂ (82) 

P̂ om equations (79) and (82)* 

Hi = " TA =  ̂ (83) 

The carry-over factor denoted by 0q2R expressed as 

Ooa. = = !ii: fS (8̂ )̂ 
•Mnn 
'O® h h '2L®1 

Equation (8{|.) is used to find the induced moments in 

any members to the left of member 1. 

The equations that are derived in this section for use 

in applying the series criterion are used as foUovst 

1, Determine the carry-over factor 0 by using equation 

(l|.) or (15). 

2, Determine the stiffness factor S by usinis equation 

(5) or (16). 

3, Determine the translational stiffness T by using 

equation (11) or (22). 
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Determine the quantities and at each Joint 

by using the appropriate equation (39)f (UO)̂  (5̂ )# 

or (61). 

Determine the stiffness factors and at each 

Joint uslns equations (Ip.) and (i|.2). 

6« Determine the distribution factorŝ  D.F., at the 

joints on the basis of the relative magnitudes of 

the stiffness faotors for the ends of the members 

meeting at the joint* 

7« Detemlne the carry-over faotors and 

using the appropriate equotlon (73)« or 

(8U). 

A short numerical example Is Included In Appendix B to 

dflmonstrate the use of the series criterion. 

Stiffness CSrlterlon 

The stiffness criterion Is another one of the criteria 

used to check the stability In a structure. The stiffness 

criterion states that at the critical buckling load the 

rotational and tranalatlonal stiffnesses of every joint In 

the structure are zero. This statement must be qualified̂  

however, since the joint In question may be at a node or at a 

point of maxlmisn deflection on the buckling curve of the 

beam-column. If the joint Is at a node, the translatlonal 
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atlffneas may not be zero and If the joint is at a point of 

maximum deflection, the rotational stiffness may not be zero* 

In applying the stiffness criterion a procedure of trial 

must be used; that is» the rotational and translational 

stiffnesses must be computed for an assumed stress situation 

andy in general, the stiffnesses computed may be different 

than zero. QSierefore, more generalized statements for the 

stiffness criterion ares 

!• \̂ on an external clockwise mcment, under a condition 

of equilibrium, is required at a Joint to rotate 

the joint in a clockwise direction, there is an 

indication of stability; but, vhen the external 

moment necessary to hold the joint in equilibrium 

is opposite to the direction of rotation, then there 

is an indication of instability* 

2* When a lateral force, under a condition of eqiilllb-

rlum, is applied at a joint and when the direction 

of the deflection of the joint is in the direction 

of the applied force, there is an indication of 

Btablllty; but, when, under a condition of equilib­

rium, the direction of the force must be opposite 

to the direction of the deflection of the joint, 

then a condition of Inotablllty is indicated* 

The first of the two statements is essentially the same as 

the series criterion* 
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Ihe rotational and translations! stiffnesses are deter­

mined, for ezample, for the right end of a member considering 

the left end to be elastically restrained against deflection 

and rotation by the members and supports to the left of the 

member that is being considered# The rotational and trans-

latlonal stiffnesses of a member are the stiffnesses of one 

end of the mGmbor« conslderins the member and the entire 

structure beyond its far end» vdiile the stiffnesses of a 

joint are the stiffnesses at the Joint considering the 

entire structure on both sides of the Joint* The elastic 

restraints supplied to the left end of the member by the 

members and supports to the left are expressed in terms of 

the rotational and translational stiffnesses of the right 

end of the member immediately to the left. Therefore, the 

procedure used is to start at the end of the structure and 

work toward the Joint by a set of computations for the right 

end of a member based on tho stiffnesses at the left which 

have been previously computed for the right end of the 

member to the left* 

The stiffness criterion as developed in this thesis was 

applied to a beam-coluxon that has a Joint about which the 

structure is symmetrical. The symmetry is required for the 

physical structure and also the stress situation in the 

members. It was also assumed that the ends of the beam-column 

are hinged. Ibider these conditions the Joint about which the 
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structure is symmetrical will be either a node or a point 

of maximum deflection on the buckling curve. The procedure 

was developed on this basis since the three-span pony truss 

used as an example satisfied the above conditions. 

Derivation of Poiraulas for the Stiffness Criterion 

Some additional Dubois will have to be defined. For 

the following definitions the structure has been cut Just to 

the rî t of Joint B and only that part of the structure to 

the left is considered. Ilie rotational stiffness, 

a member is the moment per unit of rotation necessary to 

rotate Joint B when Joint B is not pennltted to deflect* 

and all of the Joints to the left of B are free to deflect 

and rotate subject to the elastic restraints of the members 

and supports; In this case« is the force per imit of 

rotation necessary at B to prevent any deflection of Joint B 

when it is rotated. The translatlonal stiffness» of a 

member is the force per unit of deflection necessary at B to 

deflect Joint B when B is not permitted to rotate, and when 

all the Joints to the left of B are free to deflect and 

rotate subject to the elastic restraints of the members and 

supports; in this case, is moment per unit of 

deflection necessary to prevent rotation at Joint B when it 

is deflected. 
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The sign convention Indicated in Pigiire 12 was used 

throiighout the followins derivations, A laoaaont on the right 

face of a free body is considered positive when clockwise, 

A shear on the right face of a free body is considered 

positive when acting upward. An angle of rotation is 

considered positive when clockwise, A deflection is 

oonsldered positive when the joint is deflected \:q3ward, 

The quantities Sgjjj;* B̂yz' derived 

first for the case shown in Figure 13(a), The joint at A is 

hingied and fixed against translation̂  and the member AB la 

the first member in a series as Is shown in Figure 6<a), 

Referring to Figure 13(b) and to equations (28) and (29) 

the following equations for the moments at both ends of the 

member can be written: 

«ab=SI<-®A" = ° 

"ba " 

Solving equation (8̂ ) for 6̂  results in 

(87) 

Substituting equation (87) in equation (86) results in 

"ba ® " ®1̂  ̂

By definition, 

 ̂ - °l) <89) 

Referring to Figure 13(b) and summing moments about At 
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T 
X 

f SByz ̂  

T 
R 

-SfiiZ© 

•rr 

- + 

/fe 

< '  ̂ By/ypj 

i 

P2 

=6vz y& 

Plg\are 12, Sign convention for the stiffness criterion. 
Positive quantities shovm. 
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Figure 13* First span of a beam-column member with 
End-Joint A hinged. 
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»BA - ® <90) 

Substituting equation (68) In equation (90) results In 

^ (1 - C|)0< (91) 

definition̂  

= IM » ^ <1 - of) « (1 - 0,) (92) 
o< Li 

Referring to Figure 13(c) and to equations (28) and (29) 

the following equations for the moments at both ends of the 

member can be written s 

«AB ' h [ - ^ A *  <L̂ 2lll]= 0 (93) 

"bK = Si [ -h (91̂ ) 
la 

Solving equation (93) for 6̂  results in 

6. = + Ol'«5 <95) 
—To 

Substituting equation (9̂ ) in equation (9l|.) results in 

M_, = °l" (1 - 0,)i (96) 
BA -1 

Ey definition̂  

° <1 - Ol) (97) 
3L 

Comparing equations (92) and (97)» ôund to 

equal and therefore either quantity will hereafter be 

referred to as 
BJZ 

Referring to Figure 13(c) and summing moments about A: 
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*BA + '0 

Substituting equations (9̂ ) and (95) In equation (98) 

results In 

VBA = • Ti s - (1 + 0. )6 (99) 

Bj definition, 

V sJ'' 
Sfiyy = ISA = tg + (1 + Cĵ ) (100) 

Next, a more general case was taken as is shown in 

Figure 111-. Ihe quantities Ĉye* Ĉyy derived 

for joint 0 when the left end of the member. Joint B in this 

case, is elastically restrained against rotation and deflec­

tion Instead of hinged as in Figure 13* 

Referring to Figure ll].(b) and to equations (26) and (29) 

the following equations for the moments at both ends of the 

member can be written! 

"bo = ®2 [® + Og"- - (101) 

"oB » 32 [« • "2 ® - (102) 

Referring to Figure U .̂(c) and combining the quantities 

by the principle of superposition, the moment and shear at B 

can be e:q}res8ed in terms of 

«BA = SB««® + <103) 

= ^Byy^B • Sgy, e (101 )̂ 
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1 
S 

{a) 

L. Lz 

^b) 

(t) 

•  z z  
, o  

N ' f? 

Sa-jy YB - [ /b 

rjci ' S •*'/ # ; 

figure ll|.. Two members of a continuous, elastlcally supported 
beam-column with Joints A and B restrained against 
rotation and deflection, and with Joint C 
restrained against rotation and fixed against 
deflection. 
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Prom the assionod sign convention Mĝ  = - Therefore» 

- Sfe,® - SBy.TB = ®2® •  ̂JB «"5> 

Referring to Figure 11̂  (b) and sunmlng manents about C; 

*BC "*• *CB * " ̂BĈ 2 ~ ® (106) 

Substituting equations (101) and (102) and the relatlon-

B̂C ~ ̂ BA equation (106) results In 

ŝ "o< + si"e - [ffill . p 
L 2̂ 

2 yB -

[WB* ̂By,©] " 0 (107) 

Making the following substitutions! 

2̂ ® ̂ 2 "*• ®B8* (100) 

92 " (109) 

"2 = ®2 • Sgyy 

and uslns equation (11)̂  equations (105) and (106) become 

®2°2°̂  * ^2^ - ̂ 7B = ® 

S* ** 
- Dgye = 0 (112) 

Equations (ill) and (112) are solved simultaneously fop 

0 and and these values are substituted In equation (102) 

to solve for The memento by definition. Is 

The quantities 3 and ŷ  vary linearly with respect to oc and 

therefore M̂ g varies linearly with o( , 
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M, 

q t  I I  / S l « *  \  2  

•(-&-) m,. 

By definition, VQB = O(. Substituting for G and 

yg in equation (10l|.) results in 

Soy, = JJSS = M 
CX C< 

^̂ yt̂ 2®2̂ 2 " ®Byŷ 2̂  " ̂Byu — % 

4 ' ̂2®2 

(111 )̂ 

Referring to Figure l5(b) and to equations (28) and (29) 

the following equations for the moments at both ends of the 

member can be writtens 

Mbc = 32 [ - e + (1 + Co) ̂  " 78 I (115) 
I#2 J 

«0B = ®2 [ - <>2® • ®2' -̂ L̂ j 

Referring to Figure l5(o) and combining the quantities by 

the principle of superposition, the moment and shear at B 

can be expressed in terms of B̂yy« 

*BA = 3ey«yB - SflM ® <117) 

-®E8rr® <"8) 

Prom the assissed sign convention MJQQ B - Therefore 
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'^i^yyYb 

•jyy ^bfZ y 6 

Î 'f 

Figure 1̂ , Two members of a continuous, elaatlcally supported 
beam-column with Joints A and B restrained against 
rotation and deflection, and with Joint C 
restrained against deflection and fixed against 
rotation. 
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Referring to Figure l̂ (b) and summing moments about Ci 

*BC *0B " ̂2̂ *̂  *" ̂ B) " VBĈ 2 ~ ® (120) 

Substituting equation (11̂ ) and (116) and the relation­

ship ̂ BA ' ̂BC in equation (119) results in 

- sj*'e + 
oql 11 
^̂ 2 - p 
Lg 

zl -  7B) -

Making substitutions from equations (108)» (109)» (110), 

and (11 )« equations (119) and 121) become 

A2© + BgJB - Mil =0 (122) 
2̂ 

TgS -826 - 0270 « 0 (123) 

Equations (122) and (123) are solved simultaneously for ® 

and and these values substituted in equation (II6) to 

solve for V̂ m The value of varies linearly with ©< • 

Referring to Figure 1̂  and summing forces in the y 

direction: 

B̂O * ^0^ '  ̂CB " ® 

Vflo = and by definition VQ̂  is Sgyy 6 • Therefore, 

®Cyy ° ̂  ° *0 ("̂ ) ̂Baor * ~ 'â â Bjry 

4 -
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By definition, M̂ g « ®Cyz ̂  • Substituting for © and 

JQ in equation (116) res\ilts in 

Soy, = ̂  = 
o 

si** <J**' 
S.v,-S,0_T, - Ŝ f!2 (A, - S,0,) - Ŝ „B, 
By« 2 2 2 ByyÛ  2 2 2' By* 2 

. 

4 - Va 

(125) 

By oomparin;5 equations (92) with (97) and (111).) with 

(125) a reciprocal relationship is found to exist for the 

conditions used In the derivations of these equations* llhis 

reciprocal relation can be stated as follows: 

Vfhen a manent is applied at the right end of a member 

that is elastically restrained against rotation and deflection 

at the left end, the force per unit of rotation required to 

prevent deflection is numerically equal to the moment per 

unit of deflection required to prevent rotation when the 

right end of the same member is deflected by a force* 

The equations derived in this section for use in 

applying the stiffness criterion are used as follows; 

1, Determine the rotational stiffness of the end of a 

member by using equation (89) or (113)* 
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2« Determine the translatlonal stlTfness of the end of 

a member by using equation (100) or (12l|.)« 

3. The quantity from equation (92) or (12̂ ) la used 

along with the stiffnesses obtained from equations 

(89) and (100) or (113) and (12ll|.) In subsequent 

oossputatlons to obtain the stiffnesses of the far 

end of the next member* 

The equations for rotational and translatlonal stiff­

nesseŝ  as derived̂  can be used to determine Joint stiff­

nesses under the following conditionsi 

1. The equations for rotational stiffness can be used 

at the end of the beam-oolumn when the end Is 

hinged and fixed against deflection and at a Joint 

that Is located at a node on the buckling curve* 

The rotational stiffness at the hinged end of a 

beam-column Is determined directly with the equation 

for the rotational stiffness for the end of a 

member* The rotational stiffness at a Joint that Is 

located at a node on the buckling curve Is obtained 

by adding algebraically the rotational stiffness 

obtained for the ends of the members that meet at 

the Joint* 

2* The equations for translatlonal stiffness can be 

used at a Joint that Is located at a point of maxi­

mum deflection on the buckling curve* The 
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translatlonal stlfjfness of the Joint is determined 

by adding algebraically the translatlonal stiff­

nesses obtained for the ends of the members that 

meet at the joint, being careful to add only once 

the translatlonal stiffness of the elastic support 

located at the Joint. 

A ntanerioal example is included in Appendix B to 

deanonstrate the use of the stiffness criterion* 
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DESIGN AID STRESS DATA FOR TIIE THREE-SPAN 

CONTINUOUS PONY TRUSS BRID3E 

The three-span continuous pony trtias bridge that was 

used as an example for the application of stability analysis 

was designed by tho Iowa Hi-̂ hway Coimaission. The pertinent 

design data necessary for the stability analysis as pre­

viously outlined are shown in Figure 16, 

The axial stresses were detormined in this continuous 

truss on tho basis of the usually accepted assumptions used 

in bridge design. These assumptions orex 

1, The bridge is made up of a number of planar struc­

tures and each part is analyzed independently. 

2. The superimposed loads are transmitted from the 

roadway to the trusses by simple beam action of the 

floor beams, 

3* The end reactions of the floor beams are regarded as 

applied loads on the vertical trusses which are 

analyzed as continuous trusses. 

The Joints are pin-connected, 

5* The dead load is applied as equal panel loads at the 

same points of application as the live loads. 
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Figure 16» Pertinent design data of the three-span 
continuous pô y tzmss bridge. 
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Based on the above assinoptlons, the stxnictxire analyzed 

was simplified to a continuous planar truss over foxir sup­

ports. nie structure, therefore, is externally statically 

indeterminate to the second degree. The reactions for a 

tmit load placed at the lower chord panel points were deter­

mined using the strain-energy theory. With the reactions 

determined, an influence table was made for the stresses in 

the end post and top chord members; these members make up 

the beam-column to be analyzed for stability. The influence 

table for the stresses la given in TableU a plus sign 

indicates a tensile stress and a minus sign Indicates a 

o(aiipressive stress. Since the structure is synsnetrical, the 

stresses are tabulated for the members on one side of the 

center-line of the span. 

The dead load stresses in the members wore computed 

using a dead panel load determined from the design drawing 

of the Iowa Highway Commission, An estimate of the total 

dead weight was given and this quantity was assmed to be 

divided equally among all of the lower chord panel points of 

the bridge. On this basis, the dead panel load is 31.23 

kips* 

The dead load stresses in the top chord members are 

tabulated In Table 2, 

The live load stresses In the truss members were deter­

mined using the loading requirements of the Standard Highway 
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Table 1. Influence Table for the Stresses In the End Post 
and Top Cihord Meanbers 

Load Members 
At. Vl ''l"3 U3U5 V7 Ŝ lO 

h. -1.1872 -O.62I1.O -0.0̂ 80 +0.2098 +0.114.92 +0.0386 

-0,82̂ 7 -1.2686 -0.1373 +0.37̂ 6 +0.2661|. +0.1583 

-0.14.927 -0.7570 -0.3139 +0.1̂ 14.36 +0.3156 +0.1876 

h 
-0.2216 -0.31<.06 -0.6811 +O.30U8 +0.2171 +0.12914. 

H +0.1612 +0.2l].77 +0.14.9514. -0.501̂ 8 -0.3530 -0.2012 

+0.2610 +O.I1.OIO +0.8021 -0.0200 -0.8652 -0.5101̂  

H +0.2957 +0.1|5l̂ 3 +0.9086 +0.2141A -1.5395 -0.9230 

+0.2930 +0.U502 +0.9005 +0.3756 -I.I2I4.3 -1.̂ 2l̂ 2 

h.0 +0.2618 +0.̂ 022 +0.801̂ 5 +0.U056 -0.79144 -1.991414. 

111 +0.2151 +0.3305 +0.6610 +0.3761 -0.521̂ 0 -1.U2U2 

Hz +0.1609 +0.2l|.72 +0.1|.9ltl4. +0.3098 -0.3066 -0.9230 

3̂ 
+0.0981 +0.1507 +O.3OIU +0.1993 -0.1555 -o.5iolt 

hiv 
+0.0l;6J[; +0.0713 +0.11̂ 26 +0.102l|. -0.0U9l^ -0.2012 

-0.023l|. -0.0360 -0.0720 -0.0l;6l +0. 01̂ 16 +O.I29I4. 

-0.031̂ 5 -0.0530 -0.1061 -0.0685 +0.0595 +0.1876 

-0.0292 -0.0ltl|.9 -0.0898 -0.0581 +0.0512 +0.1583 

9̂ -0.0161̂ . -0.0252 -0.050U -0.0326 +0.0280 +0.0886 

-2.8307 -3.11̂ 93 -I.I4.986 -0.7301 -5.7119 -8.1120 

+1.7932 +2.7551 +5.5105 +3.3i;57 +1.1286 +1.1278 

Total -1.0375 -0.391̂ 2 +14.. 0119 +2.6156 -1̂ .5833 -6.9814.2 
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Table 2, Dead Load Stresses 

Stress - kips 

Member V3 Vs V? V9 
-32.1̂ 0 -12.31 + 125.29 +81.68 -1U3.1U -218.12 

Specifications (1). ISiese Specifications require an equiva­

lent loading consisting of a uniformly distributed load plus 

a concentrated load placed on the bridge so as to produce a 

maxlmuia stress. The magnitude of the panel load computed 

from the tmifoznly distributed load is 11.1̂  kips; this 

panel load may be placed at as many panels as necessary to 

produce a maximum stress* The maî nitude of the additional 

live panel load computed for the concentrated load is 21*39 

kips; this panel load may be placed at one or two panel 

points depending on the location of the monbor in which the 

stress is being computed. In computing the panel loads due 

to live load the lane loading was shifted out of its half 

of the roadway width; the brid,̂ e was designed under this 

condition. The stresses due to impact are taken as a per 

cent, dependin,̂  on the loaded length, of the live load 

stresses. 

In making a stability analysis, the stresses in all the 

members must be determined for one position of the live load; 

therefore, only a few of the manbers will bo stressed to 
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their maxiiaura live load stroos. 

The t;̂ o conditions of loadlns that v/111 be considered 

for the stability analysis ares The loading that will pro­

duce a raaxliam compressive stress in the member ̂ 1̂ 3* and 

the loading that will produce the maximum compressive stress 

in the member Hrennlkoff (1?) has shown that those 

conditions would be critical as far as bucW-inj of the top 

chord la concerned. 

•Rie position of the live load that produces a moxirauni 

compressive stress in is obtained by placing; the live 

panel load from the xmlforraly distributed load at all of the 

panel points of the two end spans and by placing the two 

concentrated loads at L2 maintain a condition of 

synnaetry. The live load and Impact stresses in the end post 

and top chord members for this placing of the live load are 

tabiaated in Table 3, 

Table 3* Live Load Stresses for the Position of Live Load 
that Produces a Maximum Stress in the Member ̂ 1̂ 3 

Stress - kips 

Member 1̂̂ 3 U7U9 9̂̂ 10 

Unif. L. L. -32.30 -35.93 -17.10 +12.86 +12.88 +12.87 

Cone. L« L. -18.29 -28.10 - U.86 +6.77 +6.79 +6.77 
Total -50.59 -6U.03 -21.96 +19.63 +19.67 +19.62|. 

Impact -12.65 -16.01 - 5.1̂ 9 +1̂ .91 +k*9Z +U.91 

Total L. L. '63.2k -80.0I1. -27.1̂ 5 +2k.̂  +21̂ .59 +21̂ .55 
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The position of the live load that produces a majcimum 

stress in the member ̂ 9̂ 0 obtained by placing the live 

panel load from the imiforroly distributed load at all of the 

panel points in the center span and by placing the one 

concentrated load at live load and impact stresses 

in the end post and top chord members for this placing of 

the live load are tabulated in Table Ij.. 

Table t|.. Live Load Stresses for the Position of Live Load 
that Produces a Maximum Stress in the Member 

Stress - kips 

Member 0̂̂  Û U3 V7 II7U9 9̂̂ 0 

Unif, L, L. +20.1J.6 +62.87 +16.98 -6̂ .17 - 92.̂ 6 

Cone. L. L. +5.60 +8,60 +17.21 +8.68 -16.99 - I|.2.66 

Total •f26,06 4l̂ 0*0l|. +80.08 +2̂ .66 -82.16 -135.22 

IDoipaot +7.28 +1U.̂ 6 +U.66 -lij.,9i4. - 21̂ .58 

Total L, L. +30,80 +k7.3Z +9i|..6l|. +30.32 -97.10 -159.80 

The top chord members vrill bo analyzed for stability 

for stress conditions computed on the basis of a load factor, 

applied to the live load stresses, that will produce a 

maximum mlt stress in the n̂ bers that is less than the 

yield strength of the material, 

A load factor of 6 is used for the position of live 

load that'produces a maximum stress in the member ̂ 1̂ 3* The 
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results are tabulated In Table 5# 

A load factor of 3*5 is used for the position of live 

load that produces a raaximum stress in the member 

The results are tabulated in Table 6« 

Table Combined Doad Load Plus the Load Factor Times the 
Live Load for Maximum Stress in 

Stress - kips 

Member TijDg VyVg 

D, L. - 32.1|0 - 12.31 +125.29 + 81,68 -11̂ -3. -218.12 

(L. L.)(6)-379.i}ii. -U8o.2l|. -16I|.70+ll|.7»2l|. +11̂ 7.51|. +11̂ 7.30 

Total -lp.l.81|. -l|.92.55 - 39.m +228.92 +1̂ .1|.0 - 70.82 

•ftValuos obtained from Tables 2 and 3 

Table 6. Combined Dead Load Plus tho Load factor Times 
Live Load for Maximum Stress In 

the 

Stress - kips 

Member LqÛ  Uj Û̂  "9'̂ 0 

D. L. -32.1̂ 0 -12.31 +12̂ .29 +81.68 -ll|.3.11̂  -218.12 

(L. L.)(3.5) +107.80 +16̂ .62 +331.2l|. +106.12 -339.85 -559.30 

Total +75.1|.0+153.31+i|.56.53 +187.80 -l;82,99 -777.1̂ 2 

•ttValuos obtained from Tables 2 and Ij., 
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The stresses given In Table $ and 6 will be used In the 

stability analysis of the top chord member. For the stresses 

given in Table the maximiim unit stress occurs in member 

with a value of 31,I|.00 psl. For the stresses jiven in 

Table 6, the maximum unit stress occurs in member 

a value of 29,200 psl. Since the yield strength of struc­

tural steel is approximately 3̂ *000 psl.̂  all of the \init 

stresses in the top chord members are within the yield 

strength of the material. 
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STABILITY ANALYSIS OP THE TOP CHORD OP TIE 

THREE-SPAN CONTIHXTOUS PONY TRUSS BRIDJE 

The aeries and stiffness criteria were applied in the 

stability analysis of tho top chord of the three-span con­

tinuous pony truss bridge shown in Figure 16, 

The top chord of a three-span continuous truss bridge 

has regions of tensile and compressive stress. The regions 

in which the raembers have a compressive stress can be ana­

lyzed for stability in the same manner as a structure in 

which the entire top chord is in cranpression provided that 

the series and stiffness criteria are applied at one of the 

Joints in the region of ooraprossion* The regions of tensile 

stress adjoining the rosions of compressive stress have a 

stiffening effect on the merabers in compression and have a 

tendency to reduce the possibility of instability. 

The stresses in the top chord members were computed, in 

the preceding section, for two live loading conditions• llhe 

top chord was checked for stability for these two stress 

situatioxis in the following manner} 

1. For the loading condition that produces a ma:ximum 

compressive stress in the region the series 

criterion was used by applying an external moment 

at the Joint LQ and tho stiffness criterion was used 
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by determining the rotational stlfrness of the joint 

0̂* 

2* For the loading condition that produces a maximum 

oompresslTe stress In the region ̂ 9̂ 2.0* stiff­

ness criterion was used by determining the rota­

tional and translatlonal stiffnesses of the Joint 

Elastic Properties of the End Post 

Ihe procedvires of stability analysis as presented In 

this thesis have been developed for a member that fozias a 

straight line* ISie elastic properties of the sloping end 

post member Lq̂  of the pony truss must̂  therefore, be ex­

pressed In terms of Its horizontal projection. 

The end post member, IS shown In Figure 17(a), 

The member has an actual length of and a horizontal pro­

jection of length L« The quantities S, C and T are deter­

mined for the horizontal projection of the member as shown in 

Figure 17(b). 

In the following equations a quantity like Mj, represents 

a moment about the z-axis and ©< represents an angle about 

the z-axis, both the moment and the angle are in the x-y 

plane* 

Applying a moment. Figure 17(b), of at pi'oducins 
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/ 

X 

Figure 17, Transfer of elastic constants of the end post 
member to horizontal equivalents. 
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an angle of rotation of o<2 resialta in 

«n= 

= "fjSiiyS 

The mcment can be expressed as 

Mg s l̂ Coŝ  + M|.Sin̂  

in vhioh 

(126) 

(127) 

(128) 

«n= Sj.o<^ 

Mfc = St̂ t 

(129) 

(130) 

®i6 quantity Sp is the stiffness factor determined from 

equation (?) using the inclined length of the member. The 

quantity is the torsional stiffness of the member. A 

solution for the torsional stiffness of the end post member 

is included In Appendix C. 

Substituting equations (126) and (127) In equations 

(129) and (130)« and substituting these results in equation 

(126) results in 

ê stiffness factor̂  S« is the moment per unit of 

rotation; therefore. 

The moments induced at Figiire 17(a), can be expressed 

as 

Mjj e SpÔ gCoŝ  ̂ + cK jSin̂ /i5 (131) 

S = = SyCosŜ  + Ŝ Sin2̂  (132) 

»n= (133) 
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Hj = - Mj. (13U) 

The quantity Cj|_ Is the carry-over factor determined from 

equation (l|.) using the Inclined length of the member. 

The moment can be expressed as 

MJ = Ĵ Coŝ  - 4sin̂  (135) 

or 

K = Cl̂ r - St <136) 

The carry-over factor, C, is therefore 

0 = ̂  = OlSpOoâ  ̂- 3|.31ng/̂  (13Y) 
Mj 3̂ Co««!̂  +S(,31nii/S 

The translational stiffness, T, of the end post com­

puted on the basis of the inclined length Is also the 

translational stiffness, T, for the horizontal projection 

of the member. 

Stiffness of the Elastic Supports 

The top chord members ore elastically supported in a 

lateral direction at the panel points by a frame composed of 

the verticals of the truss and the floor beams framing into 

the verticals. 

A line diagram representing; the frame at each panel 

point is shown in Figure l8(a). Ihe force, P, per unit of 

deflection,  ̂, is defined as the stiffness, t, of the 

elastic support. 
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Figure 18, Diaĉ rama repreaentlnp; the cross frame 
at each panel point. 
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The moment-area method is used to deteraine the value of 

the stiffness of the elastic support. Using the diagram 

shown in Figure 18 (b), the equation for the deflection is 

St e  ̂̂  4- ~  ̂ (l'?8) 
2 3 Elg 2  ̂

Therefore, 

t = f = , 1 5 (139) 
^ + hd̂  
3EIi 2El2 

The stiffness of the elastic support at and is 

detormined vriLth equation (139) and information from Figure 

l6« The quantities required for equation (139) are 

II = 1165.8 in,''-

Ig = 7i|lt2.2 in-'̂  

E B 29,000̂ 000 pai. 

d « ll.eoli ft. (ll»-7i) 

h 5= 31.033 ft. (31»-10) 

resulting in t » 22.61|. kips per inch. 

The stiffness of the elastic supports at all of the 

other intermediate panel points, at which = 170.9 In,̂ , 

la 5*03 kips per inch. 
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Nioaerlcal Result a of Stability Analysis 

First, the top chord aombers wore checked for stability 

using the stresses given in Table Xtiese stresses were 

determined from the loading condition, with a load factor of 

6, that produced a region of compressive stress near the end 

of the span with a maximum value in the member 

If the region in compression buckles, the member at LQ 

must rotate. Therefore, the series and stiffness criteria 

were applied to joint LQ« 

The quantities that were computed for use in applying 

the series criterion are tabulated in Table ?• A moment of 

100 inch kips was applied at joint LQ. All of the joints 

except LQ were balanced and the summation of the momenta 

carried back to LQ was found to be 29«7 inch kips resulting 

in a value of the factor r of 0,297« 

The quantities C, 3, and T in Table 7 for the members 

were used in applying the stiffness criterion. The solution 

was made by starting at one end of the struoture and working 

to the far end# The rotational stiffness of Joint LQ, in con­

sidering the entire structure to the right, was found to be 

66,000 inch kips per radian of rotation* 

Second, the top chord members were chocked for stability 

using the stresses given in Table 6« These stresses were 

determined frcMn the loading condition, with a load factor of 
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Table 7* Coiqmt«d Qaantiti«« for Us* in Applying th* S*ri*8 and Stiffhess Criteria 

Kedber z 

in«̂  

Stress 

kipa 

C S 

|nt ttps 
radian 

T 3L 
in. IdDs 
rsdisn 

SR 
in. kiDS 
ridiaT 

®aL 

L U 
0 1 537.80 -411.84 0.508 152«480 12.43 94,080 ia,680 0.203 0 

û Oa 537i80 -492.55 0.527 334,590 28.80 165,990 162,920 0.046 0 

U2U3 537.80 -492.55 0.527 334,590 28.80 164,450 163,940 0.039 0 

640.73 -39.41 0.502 412»060 37.98 205,340 208,440 0.0 0 

640.73 -39.4L 0.502 412,060 37.98 217,100 191,U0 0.055 -0 

w 528.71 •228.92 0.488 346,200 33.07 182,380 204,020 0.028 0, 

528.71 •228.92 0.488 346̂ 200 33.07 197,840 196,290 0.105 0, 

¥« 671.33 •4.40 0.500 432,770 40.09 209,460 210,760 -O.Q33 -0, 

V9 671.33 •4.40 0.500 432,770 40.09 211,410 212,710 -0.025 -0< 

"9̂ 10 986.04 -70.82 0.502 633,720 58.37 262,500 263,450 -0.203 -0, 
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App3orlng the S«rit8 and StiTAif 88 Crltwria 

L&£ 
la 

T 

4P8 
SL 

radian 

®R 

radian 

CaL ®aR ®bL ®hR ®cL ®oR 

90 12.43 94»O0O 141,6dO 0.203 0.470 0.503 

?0 2d.80 165,990 162,920 0.046 0.029 0.466 0.492 0.696 0.742 

90 2d.do 164#450 163,940 0.039 0.035 0.452 0.454 0.679 0.663 

SO 37.9« 205«340 208«440 0.0 0.016 0.397 0.37S 0.780 0.731 

60 37.9« 2X7*100 191,110 0.055 -0.073 0.166 0.324 0.310 0.665 

90 33.07 ltt«3S0 204,020 0.02d 0.131 0.319 0.17« 0.694 0.344 

90 33.07 197#«¥) 196,290 0.105 0.097 0.371 0.3«3 0.740 0.769 

70 40.09 209*460 210,760 -0.Q33 -0.027 0.347 0.336 0.716 0.695 

70 40.09 211,410 212,710 -0.025 -0.016 0.361 0.350 0.740 0.713 

20 5«.37 262,500 263,450 -0,203 -0.197 0.296 0.290 0.726 0.702 
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Table 8, Can5)Uted Quantities for Use in Applying the 
Stiffness Criterion. 

Member I 
In.!!-

Stress 
kips 

0 S 
in. kiT3S 
radian 

T 

537.80 +7$.kO 0,I|.6li. 161,610 11;. 93 

Va 537.80 +1̂ 3.31 0,1|.92 350,270 33.11 

VzVj 537.80 +153.31 0.1̂ 92 350,270 33.11 

6̂ 0.93 +U56.53 0.U8I 1̂ 23,900 la.29 

V5 61̂ 0.93 0,U8l 1̂ 23,900 la. 29 

Ve 528.71 +187.80 0.î 90 311-5.230 32.79 

V7 528.71 +187.80 0.1̂ 90 3U5,230 32.79 

Ve 671.33 -1̂ 2.79 0.521 1|20,900 36.31; 

"a"? 671.33 -U82,79 0.521 2̂0,900 36.81|. 

»̂10 986. Olt -777.̂ 2 0.523 616,500 53.61; 
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3,5# that produced a region of compressive atreaa In thê  

center portion of the span with a maximum value In the 

member ̂ 9̂ 0* 

If the region In compression buckles, the joint at Ho 
would be either a point of maximum deflection or a point of 

a node on the deflection curve duo to the symmetry of the 

structure and the stress condition. 

The quantities that were computed for use in applying 

the stiffness criterion are tabulated in Table 8. The 

solution was made by starting; at one end of the structure 

and working to the Joint L;|lO*  ̂considering the entire 

structure to the right and left of joint rotational 

stiffness of joint was found to be 331»UOO trioh kips per 

radian of rotation and the translational stiffness of joint 

was found to be 11.31 kips per inch of deflection. 

Discussion of Numerical Results 

In using the series criterion in checldng for stability 

for the first condition of loading, the stability factor, r, 

was found to be 0.297* When the stability factor is less 

than one the moment distribution series converges and a 

condition of stability is indicated. In makln:; the moment 

dlatrlbutlon solution the moments that were carried over to 

the joints beyond were of auch marpiltude that when these 
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joints were balanced, no moment was carried back to Joint 

and therefore did not contribute anything to the series 

solution. Therefore, for this particular solution, only a 

part of the structure needed to be considered in applying 

the series criterion at Joint LQ« 

In using the stiffness criterion In checking for 

stability for the first condition of loading the rotational 

stiffness of Joint LQ was found to be 66,000 inch kips per 

radian of rotation; the moment was found to be in the same 

direction as the rotation indicating a condition of 

stability which agrees with the series solution, 

Ihe series criterion solution can be used to obtain the 

same numerical result as was obtained from the stiffness 

criterion solution. For the loft end of member the 

stiffness factor, Sj,# as given in Table 7 i« 9li.*080 inch 

kips per radian of rotation; this is the moment necessary to 

rotate Joint LQ when the other Joints are permitted to 

deflect subject to the elastic supports but are fixed against 

rotation. In the series solution it was found that for each 

100 inch kips of moment applied at Lq, 29.7 inch kips was 

carried back from the other Joints leaving 70.3 inch kips when 

all of the Joints except LQ had been balanced. Therefore, 

the moment necessary to rotate the member at Lq one radian 

would be 0,703(9i|.»080) = 66,ll|.0 inch kips which is essentially 

the moment detemined from the stiffness criterion solution. 
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since the aane Infomation can be obtained by the gtirf-

ness criterion as was obtained from the series criterion, 

only the stiffness criterion was used In checkln;; for 

stability for the second condition of loading, Bie rota­

tional stiffness of joint L̂ Q was found to be 331»l|-0O Inch 

kips per radian of rotation* The noraent was found to be In 

the same direction as the rotation Indicating a condition of 

stability If the structure buckles with a node at on the 

deflection curve. The translatlonal stiffness of joint L]̂ Q 

was found to be 11,31 kips per Inch of deflection. The 

force was found to be In the same direction as the defloctlon 

Indicating a condition of stability If the structure buckles 

with a deflection curve which has a point of maximum deflec­

tion at Iî Q, Thereforof the top chord members wore foimd 

to be stablo for the posslblo buckling curves. 

From the above results. It can be concluded that the 

top chord would not buckle with load factors which produce 

stresses In the members that are within the elastic strength 

of the material. 
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SUMMARY AKD RECOMMENDATIONS 

S-ummary 

The object of this investigation was to make an analy­

tical study of the elastic stability of the top chord of a 

three-span continuous pony truss bridge. 

The top chord and end post members were considered 

hinged and fixod anainat lateral deflection at the ends of 

the span and olastlcally supported a;3ainst lateral deflection 

at the intermediate panel points. The elastic supports were 

provided by the cross frames composed of the verticals of 

the truss and the floor beams framinj into the verticals. 

The entire effect of the diagonal web members and the tor­

sional stiffnoas of the vertical members were neglected. 

AlaOf it was assumed that the top chord members were not 

deflected out of a straijit line« whon viewed from above, by 

the loads applied to the floor system. 

Two criteria, series and stiffness, were developed and 

were used as a basis for checking the elastic stability of 

the top chord members. 

The series in the sories criterion procedure is obtained 

from a moment distribution type of solution. Equations were 

derived for the necessary constants required for a moment 
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distribution solution of a beam-column elastically supported 

against deflection at internodiate points. When the monent 

distribution series converges a condition of stability la 

indicated, but when the series diverges a condition of 

instability la indicated. 

Equations were derived for use in applying the atlffneas 

criterion to obtain the rotational and tranalatlonal atiff* 

nesses of one end of a neraber considerin;; the entire atruc-

ture beyond its far end. The equations, as derived, for the 

stiffneosea for tho end of a mombor can be uaed to dotexnlno 

the rotational stiffness of the hinged end of a bean-column 

and the rotational and tranalatlonal stiffnesses of a Joint 

provided that tho structure and stress conditions are exactly 

the some on both sldea of the Joint. The principles of the 

stiffnesa critorion ares 

1. VAien on external clockwise moment, under a condition 

of equilibrium. Is required at a Joint to rotate the 

Joint in a clockwise direction, there Is an indica­

tion of stability; but, when the oxtomal moment 

necessary to hold tho Joint in equilibrium la 

oppoaite to tho dlroction of rotation, then there is 

an indication of instability. 

2* Wiexi a lateral force, under a condition of equlll-

bx>lum, is applied at a Joint and when the direction 

of the deflection of the Joint la in the direction 
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of the applied force there is an indication of 

stability; but, when, undor a condition of equili-

brium* the direction of the force nnist be opposite 

to the direction of the deflection of the Joint, 

then a condition of instability is indicated. 

The process of determining the load factor that produces 

a stress condition which causes buckling nust be one of 

trial; that is, the structure nmst be analyzed for stability 

with various load factors until a condition of instability 

is found or until the stresses reach the yield stress. In 

applying the series and stiffness criteria, the buckling 

c\2rve corresponding to the xninlnnsQ load factor cmst be 

obtained as was demonstrated in the illustrative example 

included in Appendix B, If the bean-column buckles with a 

node at one of the Joints, the value of the translatlonal 

stiffness of that Joint may indicate a condition of 

stability; and, if the beam-column buckles with a point of 

maximiBn deflection at one of the Joints, the rotational 

stiffness of that Joint may indicate a condition of stability, 

and the otabillty factor determined with the use of the 

series criterion may Indicate a condition of stability. 

Therefore, any results obtained by the use of the series and 

stiffness cx̂ terla must be carefully interpreted. 

Of the two criteria, series and stiffness, the stiffness 

criterion involves a smaller number of equations and when it 
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can be used It is the more practical oT the two procediires. 

The series criterion con be eqpplied to any joint and there­

fore can be considered as the more general procedure of the 

tvo. However, only the rotational stiffness of a Joint can 

be checked by the series criterion procedure. 

In checking the top chord of the three-span continuous 

pony truss bridge, the series and stiffness criteria must be 

applied to one of the joints In the region of compressive 

stress* The regions of tensile stress adjoining the re-jions 

of compressive stress have a stiffening effoot on the mombers 

in compression and have a tendency to reduce the possibility 

of buckling, 

A procedure was presented to determine the elastic 

constants for the inclined end post member in terms of the 

horizontal projection of the member, A similar procedure 

could be used to include the effect of the other dlat̂ onal 

web members in an analysis for stability. If the effect of 

the diaf̂ onal web members were Included, the resistance of the 

top chord members to buckling would be increased* 

The top chord of the three-span continuous pony truss 

was checked for stability for two conditions of live loading 

and the member was found to be stable with stresses In the 

top chord member which were within the elastic strength of 

the material. 
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Recammendatlons 

On the basis of the work that has been done In this 

thesis the following extensions are sû êsted. 

1, Determine the effect on the stability of the top 

chord raanber of the live load deflections of the floor beans 

and the resulting lateral movenents of the tops of the 

vertical members* 

2« Determine the forces which act at the top of the 

vertical members of the lateral cross frames as a result of 

the resistance offered to deflection by the top chord of 

the vertical trusses, 

3. Extend the application of the series and stiffness 

criteria to the Inelastic range of stress in the material. 

This might be used along with the principles of limit design 

to reduce the present factor of safety of design and thereby 

utilize the structural material more officiently, 

U. Consider the effects on the stability of the top 

chord member of the torsional resistance of the verticals 

and the entire resistance of the dlâ ônals. 

Deteimine vdiat approximations can be made in 

applying the series and stiffness criteria to any given 

structure. Some indication of this was given for the par­

ticular structure used as an example in this investigation. 



www.manaraa.com

92 

6, Extend the atlffneas criterion so that the rota­

tional and tranalational stiffneases can be determined for 

an inteiBiediate joint that is not at a point of ayimnetry 

in the structure. 
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Figure 19. Carry-over factors for tension and 
compression members. 
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Flgviro 20. Stiffness factors for tension and 
compression members. 
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ILLUSTRATIVE EXAMPLE 

!Qie following example la Introduced to demonstrate the 

use of the aeries and stlfrness crlterlat as presented In 

this thesiŝ  to check the stability of a continuous beam-

column shown in Fiisure 21(a), The joints A and E are hixiged 

and fixed a:;ainst deflection̂  joints B and D have elastic 

supports with a stiffnoas of 1.0 kip per inch against deflec-

tion» and Joint C has an elastic s\:9port with a stiffness of 

0,12 kips per inch against deflection. The individual 

members have a length of 100 incheŝ  a mc»nont of inertia of 

10 in.̂ 9 an axial stress of 100 kips con̂ ressiont and a 

modiilua of elasticity of 29«000 kips per sq. in« 

The factors needed for the stability analysis using the 

series criterion are tabulated in Table 9* The quantities 

computed in intermediate calculations preceding the deter­

mination of the distribution and carry-over factors are also 

(̂ ven in Table 9* Units of inches and kips were used in the 

calculations. 

The first solution usln̂  the series criterion is shown 

in Table 10. An external moment of 100 inch kips was applied 

at Joint A. All of the Joints except A were balanced and 

then a summation was made of the carry-over moments at A. 

Only a part of the solution Is shown since the Joints had to be 
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Figure 21« ElasticalZy stq>ported beam~column* 
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Table 9« Computed (Quantities for Use in Applyin,; the Series 
and Stiffness Criteria 

A B C D E 
1.0 0,12 1.0 

c 0.605 o.6o5 0.605 0.605 

s 10,210 10,210 10,210 10,210 

gf tl 16,390 16,390 16,390 16,390 

T 2.278 2.278 2.278 2.278 

t* 1.891 3.278 l.U6l̂  l.U61|. 3.278 1.891 

T« 1.033 2.278 0.891 1.3Ui|̂  I.3W1. 0.891 2.278 1.033 

R 0.393 0.239 0.3l|i|. 0.295 0.295 o.M 0.239 0.393 

S 3,770 6,293 i|.,573 5,376 5,376 î ,573 6,293 3,770 
Ca -0.0698 0.359 0.118 0.250 0.250 0.118 0.359 -0.0698 

Cb 0.669 1.235 0.899 0.899 1.235 0.669 

Oc 0.918 0.695 0.695 0.918 
D.P. 1.000 0.579 0.1̂ 21 0.500 0.500 0.U21 0.579 1.000 
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TablA 10. Series Solution tar a Moment Applied at A 
A .B .C JL 

Ob 
0 
0.669 

-0.0698 0.359 

0.918 0.695 0.695 0.91s 
1.235 0.899 0.899 1.235 
0.118 0.250 0.250 0.11s 

0.421 0.500 0.500 0.421 

0.359 
0.669 
-0.0698 

D.F, 1.0 

m 
-12.45 
Ĵ 2.32 
+1.02 
+8.8̂  ̂
+6.2fr 

-20.36 
-A.65 
+5.19 
+5.13 

-lJO.Ot» 
-5.87 
+1.91 
+4.67 
-'f.lB 
-6.20 
-0.16 
etc. 

I=-100 

0.579 

-6.98 

Ĵ 2.32 
+1.02 
+8.81* 
azs22. 

+66.90 

-20.36 
-̂ .65 
+5.19 

-lO.Oi* 
-5.87 
+1.91 
ja*£&. 

-11.77 
+1.47 
+12.72 
112i 
-5.66 
-̂ .69 
+7.47 

-2.79 
-8.44 
-̂ 2.75 

-4.1S 
.6.20 
-0.16 

+9M 
-1.16 
-8.92 
-0.23 

+66.90 
-2.98 
diZiSa. 
+1.47 
+12.72 
+1.49 

+61.41 
-31.16 

-6.69 
+7.47 
+1.22 

+0.14 
+13.86 
+15.62 
=22a6i 

-8.44 
+2.75 
+1.12 

-0.64 
+8.14 
+12.84 

-8.92 
-0.23 

-0.81 
+3.00 

+11.68 

-0.85 
-0.25 

+61.41 
-31.16 
-01.77 

0.579 

+42.68 
-21.66 
-42.32 
•»1.63 

+13. 
+15.62 
-5.66 
-5.42 
+ 8.14 
+12.84 
-2.79 
.=6sSL 

-1.45 
+10.86 
-a).36 

•+3.00 
+11.68 
-1.16 
-7t22 

-0.85 
+8.92 
-10.04 
=2s22 

-0.25 

-0.31 
-+8.12 
-4.18 
"?»y} 
+0.03 

1.0 

+42.68 
-21.66 
J!»2.32 
+•0.58 
122*22 
+•10.86 
-20.36 
-2.67 

+8.92 
-10.04 
-3.37 
+4.49 
-+8.12 
-4.18 
-3.56 

„d2*2a 
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balanced a lar̂ e number of timea to reach equllibriioa. The 

factor r for this case was found to equal one. Indicating a 

condition of neutral equilibriimij in other words, since no 

mciaent la reqtilred at A to rotate the member at Joint A, a 

condition of Instability exists* When r is found to be one, 

the moment distribution solution converges very slowly. 

When the value of r is greater or smaller than one, the 

moment distribution solution will converge more rapidly, 

Ihe deflection curve for the member with a moment 

applied at Joint A would be similar to the curve shown in 

Pisure 21(b). 

A second solution usixî  the series criterion is shown in 

Table 11* An external moment of 10,752 inch kips was applied 

at Joint C. This magnitude of moment is necessary to rotate 

Joint 0 one radian and Is used so that the similarity with 

the stiffness criterion solution can be demonstrated. All of 

the Joints except C wore balanced and then a sustaation was 

made of the carry-over moments at C, This summation was 

found to be -8,750 inch kips Indlcatlr̂  that a moment of 

10,752 - Q#750 or 2,002 inch kips is reqtaired to rotate Joint 

C one radian When the other Jointe have rotated and deflected 

to a position of equilibrium. The factor r for this case was 

found to equal 0.8ll|. indicating a condition of stability. 

The member, however, is unstable as was shown in the first 

solution. 
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Table U. Series Solution for a Homent Apî ed at C. 

S 

Cc 
Ob 
Ca 

0.669 
-0«0698 0.359 

0,918 
1,235 
0,118 

0.695 
0.899 
0.250 

0.695 
0,899 
0.250 

0.93B 
1.235 
0.118 0.359 

0.669 
.̂0698 

D.P, 1.0 

+4833 
1̂284 

+1070 
-727 
+268 

+1B7 
J33 
+ 49 

+32 
-25 
+9 

-5 
+3 
+2 
-O. 
-1 

0,579 

+4Q33 

+ 2*t8 
+1070 
-727 
+̂ 7 
+43 
+1B7 
-133 
i22L 
+7 
+32 
-25 
:2L 
+1 
+4 
-5 
JJL 

0 
-1 
-1 

0.421 

+1344 

^̂ 574 
+1539 
-10't6 

-409 
+269 
9̂2 

+46 
-36 
.tl2 
-11 
+6 
-7 
+5 
+1 
-2 
-2 

0.5 

+5376 
-307 
-̂ 74 
+1539 
.ao<»6 
+64 
-409 
+269 
-192 
+12 
-69 
+46 
-36 
+2  
-11 
+6 
-7 
+1 
+1 
-2 
-2 

V 

0.5 

+̂ 76 
-3212 
-2179 
+147 
-ai39 
+671 
-375 
+26 

-209 
+122 
-63 
+4 
-39 
+23 
-10 
+1 
-8 
+6 
+1 
0 

-2 

r-v 
• = -0750 

J 

0.421 

+1344 
-3212 
-2179 
+0̂  
-1139 

-375 
+gift 
-209 
+122 
-63 

Jt2L 
-39 

-10 
-il 

-8 
+6 
+1 
-2 

0.579 

+4833 
-2232 
-1514 
+1714 
+119 
+466 
.261 
+m 
+22 
+85 
J)4 

+16 
-7 
J:a 
+ 1 
+4 

0 
-2 

1.0 

+4833 
-2232 
-1514 
+ 615 

-261 
+108 
-313 
+-85 
-44 
+18 

-7 
+3 
-12 
+j!|! 
0 

-1 
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The deflection cttrTe for the beam-column with a moment 

applied at joint 0 would be similar to the cwve shown In 

Plsure 21 (o). Due to the symmetry of the beam-column. Joint 

C would not deflect and la a node on the deflection curve* 

The two solutions using the series criterion show the 

need for considering the shape of the deflection curve with 

Its effect on the stability of the member. 

!Rie member shown In JPljure 21(a) was also checked for 

stability usln̂  the stiffness criterion. The rotational and 

translatlonal stiffnesses of Joint C were determined; due 

to the symmetry of the member, the Joint C Is a node or a 

point of maximum deflection on the deflection curve respec­

tively for the two stiffnesses. The rotational stiffness of 

Joint E was dotemined, which agreed with the results of the 

first solution in applying the aeries criterion. 

In using the equations derived for the stiffness 

criterion, and startlnjj at the left end of the member, the 

results are as follows: 

Hember AB, 

" 6,1|.70 

®Byz = ̂ -7 

= 0.6i}.7 

Member BC, 
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Scyy = 0,060 

Since the entire meiaber Is sTimnetrlcal about Joint C» 

the rotational stlffnoaa of Joint C is 1,000 + 1,000 = 2,000 

inch kips. This moment agrees in magnitude with the value 

obtained in the second solution using the series criterion* 

Ihe value of the rotational stiffness indicates that the 

member is stable if it is deflected with a node at Joint C* 

The translatlonal stiffness of Joint C is 0,060 •*> 0.060 < 

0*120 = 0 kips per Inch* The stiffness of the elastic 

support at C is included in each of the 0»060 values and 

therefore the 0,120 value must be subtracted to obtain the 

true translatlonal stiffness of the Joint C considering the 

entire structure on both sides of Joint G, The value of the 

translatlonal stiffness indicates that the member is unstable 

since no force is required to deflect Joint C* The metmbor, 

therefore, would buckle as shown in Figure 21(b). 

Continuing the solution and working to the right from 

Joint 0, the results are as follows} 

Member CD, 

SDy« = 32.8 

Meznber D£, 
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The rotational atlffneaa of zero at joint E agrees with 

the first solution made uslnj the series criterion and also 

indicates that the member is unstable. 
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Appendix C 
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TOHSIOIIAL STIPPIIESS OP TIIE END POST MEMBER 

The torsional stiffness of the end post werabor was 

reqxxired to dotenaine the elastic properties, using equations 

(132) and (137)# of the horizontal projection of the inanber. 

The torsional stiffness, is defined as the torque 

per unit of twist required to twist a member* The procedure 

used to evaluate the torsional stiffness has been presented 

by Hrennikoff (17). 

A cross section of the end post inexnbor is shown in 

Figure 22« Portions of the channel flanges and of the cover 

plate outside of the gage lines of the rivets do not contri­

bute to the torsional stiffness and are not shown on the 

fixture. 

When a torque is applied to the end post member, shearing 

stresses are developed aa shown in Figure 22. The shear 

flow, q, is a constant for a thin-walled section* The shear 

flow io defined as the force per unit of length of periphery 

of the cross section. Let T represent the shearing unit 

stress, then, 

q = 0.21̂  = 0.375 Tj = 0.y6 (1̂ 0) 

The roFoê  P« In the lacing bap oen be expresaed aa 

POos 30 8 (0.37̂ ) 

P = 6.17 
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Figure 22, Cross section of end post member 
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The total torque developed by the cross section can be 

expressed as 

Mt = (0.2lt)Tĵ (9.S6)(U.U9) + (0.375) TgtlJt.SSjdO.W) 

- {2)(0.lt36)T3(1.38)(9.56) 

Equating the external and Internal work per unit of 

length of the member results In 

K| » Tf(o.2lj)(9.56)(2) + li(0.375) (11;.25) 
2aĵ   ̂ 20 

+ Tf(O.W6)(1.38)(U) + p2(2.0) (ii,,) 
20 2E (2.25) (0.1(33} 

By substituting the relationships from equations (li|.0)f 

(li|l) and (li|.2) In equation (li|.3)» the equivalent polar 

moment of Inertia, can be found* Usln̂  the relationship 

a a 

Jo = 153.1<. In.̂  

The torsional stiffness* for the end post member ls« 

therefore» 

Asaunlng Cf = 11,600 kips per sq* ln«, 

3̂  ® 7»̂ 9̂  Inch kips per radian of twist. 
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